Properties

Label 8.0.10070523904.1
Degree $8$
Signature $[0, 4]$
Discriminant $2^{22}\cdot 7^{4}$
Root discriminant $17.80$
Ramified primes $2, 7$
Class number $2$
Class group $[2]$
Galois group $C_4\times C_2$ (as 8T2)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![14, -56, 120, -144, 113, -52, 22, -4, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^8 - 4*x^7 + 22*x^6 - 52*x^5 + 113*x^4 - 144*x^3 + 120*x^2 - 56*x + 14)
 
gp: K = bnfinit(x^8 - 4*x^7 + 22*x^6 - 52*x^5 + 113*x^4 - 144*x^3 + 120*x^2 - 56*x + 14, 1)
 

Normalized defining polynomial

\( x^{8} - 4 x^{7} + 22 x^{6} - 52 x^{5} + 113 x^{4} - 144 x^{3} + 120 x^{2} - 56 x + 14 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $8$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[0, 4]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(10070523904=2^{22}\cdot 7^{4}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $17.80$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $2, 7$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is Galois and abelian over $\Q$.
Conductor:  \(112=2^{4}\cdot 7\)
Dirichlet character group:    $\lbrace$$\chi_{112}(1,·)$, $\chi_{112}(99,·)$, $\chi_{112}(97,·)$, $\chi_{112}(41,·)$, $\chi_{112}(43,·)$, $\chi_{112}(83,·)$, $\chi_{112}(57,·)$, $\chi_{112}(27,·)$$\rbrace$
This is a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $\frac{1}{31} a^{7} + \frac{12}{31} a^{6} - \frac{3}{31} a^{5} - \frac{7}{31} a^{4} + \frac{1}{31} a^{3} - \frac{4}{31} a^{2} - \frac{6}{31} a + \frac{3}{31}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

$C_{2}$, which has order $2$

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $3$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  \( 2 a^{6} - 6 a^{5} + 37 a^{4} - 64 a^{3} + 143 a^{2} - 112 a + 53 \),  \( \frac{442}{31} a^{7} - \frac{1547}{31} a^{6} + \frac{8811}{31} a^{5} - \frac{18160}{31} a^{4} + \frac{38293}{31} a^{3} - \frac{40053}{31} a^{2} + \frac{23140}{31} a - \frac{5463}{31} \),  \( \frac{506}{31} a^{7} - \frac{1771}{31} a^{6} + \frac{10107}{31} a^{5} - \frac{20840}{31} a^{4} + \frac{44185}{31} a^{3} - \frac{46323}{31} a^{2} + \frac{27654}{31} a - \frac{6759}{31} \)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 93.7356023859 \)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$C_2\times C_4$ (as 8T2):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
An abelian group of order 8
The 8 conjugacy class representatives for $C_4\times C_2$
Character table for $C_4\times C_2$

Intermediate fields

\(\Q(\sqrt{-7}) \), \(\Q(\sqrt{2}) \), \(\Q(\sqrt{-14}) \), \(\Q(\sqrt{2}, \sqrt{-7})\), 4.0.2048.2, 4.4.100352.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type R ${\href{/LocalNumberField/3.4.0.1}{4} }^{2}$ ${\href{/LocalNumberField/5.4.0.1}{4} }^{2}$ R ${\href{/LocalNumberField/11.4.0.1}{4} }^{2}$ ${\href{/LocalNumberField/13.4.0.1}{4} }^{2}$ ${\href{/LocalNumberField/17.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/19.4.0.1}{4} }^{2}$ ${\href{/LocalNumberField/23.1.0.1}{1} }^{8}$ ${\href{/LocalNumberField/29.4.0.1}{4} }^{2}$ ${\href{/LocalNumberField/31.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/37.4.0.1}{4} }^{2}$ ${\href{/LocalNumberField/41.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/43.4.0.1}{4} }^{2}$ ${\href{/LocalNumberField/47.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/53.4.0.1}{4} }^{2}$ ${\href{/LocalNumberField/59.4.0.1}{4} }^{2}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$2$2.4.11.2$x^{4} + 8 x + 14$$4$$1$$11$$C_4$$[3, 4]$
2.4.11.2$x^{4} + 8 x + 14$$4$$1$$11$$C_4$$[3, 4]$
$7$7.2.1.2$x^{2} + 14$$2$$1$$1$$C_2$$[\ ]_{2}$
7.2.1.2$x^{2} + 14$$2$$1$$1$$C_2$$[\ ]_{2}$
7.2.1.2$x^{2} + 14$$2$$1$$1$$C_2$$[\ ]_{2}$
7.2.1.2$x^{2} + 14$$2$$1$$1$$C_2$$[\ ]_{2}$