Properties

Label 7.7.988410721.1
Degree $7$
Signature $[7, 0]$
Discriminant $149^{2}\cdot 211^{2}$
Root discriminant $19.27$
Ramified primes $149, 211$
Class number $1$
Class group Trivial
Galois group $A_7$ (as 7T6)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![2, -11, -14, 16, 11, -7, -2, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^7 - 2*x^6 - 7*x^5 + 11*x^4 + 16*x^3 - 14*x^2 - 11*x + 2)
 
gp: K = bnfinit(x^7 - 2*x^6 - 7*x^5 + 11*x^4 + 16*x^3 - 14*x^2 - 11*x + 2, 1)
 

Normalized defining polynomial

\( x^{7} - 2 x^{6} - 7 x^{5} + 11 x^{4} + 16 x^{3} - 14 x^{2} - 11 x + 2 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $7$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[7, 0]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(988410721=149^{2}\cdot 211^{2}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $19.27$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $149, 211$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

Trivial group, which has order $1$

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $6$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  \( a^{5} - a^{4} - 5 a^{3} + 3 a^{2} + 4 a - 1 \),  \( a^{4} - a^{3} - 5 a^{2} + 3 a + 5 \),  \( a^{4} - a^{3} - 4 a^{2} + 2 a + 3 \),  \( a^{5} - 6 a^{3} - 2 a^{2} + 7 a + 3 \),  \( a^{6} - a^{5} - 7 a^{4} + 4 a^{3} + 14 a^{2} - 3 a - 7 \),  \( a^{5} - 2 a^{4} - 4 a^{3} + 7 a^{2} + 2 a - 3 \)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 387.026007798 \)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$A_7$ (as 7T6):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A non-solvable group of order 2520
The 9 conjugacy class representatives for $A_7$
Character table for $A_7$

Intermediate fields

The extension is primitive: there are no intermediate fields between this field and $\Q$.

Sibling fields

Degree 15 siblings: Deg 15, Deg 15
Degree 21 sibling: Deg 21
Degree 35 sibling: data not computed
Degree 42 siblings: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type ${\href{/LocalNumberField/2.5.0.1}{5} }{,}\,{\href{/LocalNumberField/2.1.0.1}{1} }^{2}$ ${\href{/LocalNumberField/3.7.0.1}{7} }$ ${\href{/LocalNumberField/5.7.0.1}{7} }$ ${\href{/LocalNumberField/7.7.0.1}{7} }$ ${\href{/LocalNumberField/11.5.0.1}{5} }{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }^{2}$ ${\href{/LocalNumberField/13.3.0.1}{3} }{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{2}$ ${\href{/LocalNumberField/17.7.0.1}{7} }$ ${\href{/LocalNumberField/19.4.0.1}{4} }{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }$ ${\href{/LocalNumberField/23.4.0.1}{4} }{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }$ ${\href{/LocalNumberField/29.7.0.1}{7} }$ ${\href{/LocalNumberField/31.7.0.1}{7} }$ ${\href{/LocalNumberField/37.4.0.1}{4} }{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }$ ${\href{/LocalNumberField/41.4.0.1}{4} }{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }$ ${\href{/LocalNumberField/43.7.0.1}{7} }$ ${\href{/LocalNumberField/47.7.0.1}{7} }$ ${\href{/LocalNumberField/53.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{3}$ ${\href{/LocalNumberField/59.4.0.1}{4} }{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }$

Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$149$$\Q_{149}$$x + 2$$1$$1$$0$Trivial$[\ ]$
$\Q_{149}$$x + 2$$1$$1$$0$Trivial$[\ ]$
149.2.0.1$x^{2} - x + 3$$1$$2$$0$$C_2$$[\ ]^{2}$
149.3.2.1$x^{3} - 149$$3$$1$$2$$S_3$$[\ ]_{3}^{2}$
211Data not computed

Artin representations

Label Dimension Conductor Defining polynomial of Artin field $G$ Ind $\chi(c)$
* 1.1.1t1.1c1$1$ $1$ $x$ $C_1$ $1$ $1$
* 6.149e2_211e2.7t6.1c1$6$ $ 149^{2} \cdot 211^{2}$ $x^{7} - 2 x^{6} - 7 x^{5} + 11 x^{4} + 16 x^{3} - 14 x^{2} - 11 x + 2$ $A_7$ (as 7T6) $1$ $6$
10.149e6_211e6.70.1c1$10$ $ 149^{6} \cdot 211^{6}$ $x^{7} - 2 x^{6} - 7 x^{5} + 11 x^{4} + 16 x^{3} - 14 x^{2} - 11 x + 2$ $A_7$ (as 7T6) $0$ $10$
10.149e6_211e6.70.1c2$10$ $ 149^{6} \cdot 211^{6}$ $x^{7} - 2 x^{6} - 7 x^{5} + 11 x^{4} + 16 x^{3} - 14 x^{2} - 11 x + 2$ $A_7$ (as 7T6) $0$ $10$
14.149e10_211e10.15t47.1c1$14$ $ 149^{10} \cdot 211^{10}$ $x^{7} - 2 x^{6} - 7 x^{5} + 11 x^{4} + 16 x^{3} - 14 x^{2} - 11 x + 2$ $A_7$ (as 7T6) $1$ $14$
14.149e8_211e8.21t33.1c1$14$ $ 149^{8} \cdot 211^{8}$ $x^{7} - 2 x^{6} - 7 x^{5} + 11 x^{4} + 16 x^{3} - 14 x^{2} - 11 x + 2$ $A_7$ (as 7T6) $1$ $14$
15.149e8_211e8.42t294.1c1$15$ $ 149^{8} \cdot 211^{8}$ $x^{7} - 2 x^{6} - 7 x^{5} + 11 x^{4} + 16 x^{3} - 14 x^{2} - 11 x + 2$ $A_7$ (as 7T6) $1$ $15$
21.149e16_211e16.42t299.1c1$21$ $ 149^{16} \cdot 211^{16}$ $x^{7} - 2 x^{6} - 7 x^{5} + 11 x^{4} + 16 x^{3} - 14 x^{2} - 11 x + 2$ $A_7$ (as 7T6) $1$ $21$
35.149e24_211e24.70.1c1$35$ $ 149^{24} \cdot 211^{24}$ $x^{7} - 2 x^{6} - 7 x^{5} + 11 x^{4} + 16 x^{3} - 14 x^{2} - 11 x + 2$ $A_7$ (as 7T6) $1$ $35$

Data is given for all irreducible representations of the Galois group for the Galois closure of this field. Those marked with * are summands in the permutation representation coming from this field. Representations which appear with multiplicity greater than one are indicated by exponents on the *.