Properties

Label 7.7.8233120419813614521.2
Degree $7$
Signature $[7, 0]$
Discriminant $7^{12}\cdot 29^{6}$
Root discriminant $503.76$
Ramified primes $7, 29$
Class number $7$
Class group $[7]$
Galois group $C_7$ (as 7T1)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![3625, -576520, 62118, 36743, -2233, -609, 0, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^7 - 609*x^5 - 2233*x^4 + 36743*x^3 + 62118*x^2 - 576520*x + 3625)
 
gp: K = bnfinit(x^7 - 609*x^5 - 2233*x^4 + 36743*x^3 + 62118*x^2 - 576520*x + 3625, 1)
 

Normalized defining polynomial

\( x^{7} - 609 x^{5} - 2233 x^{4} + 36743 x^{3} + 62118 x^{2} - 576520 x + 3625 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $7$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[7, 0]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(8233120419813614521=7^{12}\cdot 29^{6}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $503.76$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $7, 29$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is Galois and abelian over $\Q$.
Conductor:  \(1421=7^{2}\cdot 29\)
Dirichlet character group:    $\lbrace$$\chi_{1421}(1,·)$, $\chi_{1421}(1051,·)$, $\chi_{1421}(1156,·)$, $\chi_{1421}(596,·)$, $\chi_{1421}(1387,·)$, $\chi_{1421}(1212,·)$, $\chi_{1421}(484,·)$$\rbrace$
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{5} a^{4} + \frac{2}{5} a^{3} - \frac{1}{5} a^{2} - \frac{2}{5} a$, $\frac{1}{215} a^{5} + \frac{19}{215} a^{4} - \frac{17}{215} a^{3} - \frac{59}{215} a^{2} - \frac{39}{215} a - \frac{5}{43}$, $\frac{1}{24321428875} a^{6} + \frac{8416536}{24321428875} a^{5} + \frac{11875818}{223132375} a^{4} - \frac{10840722801}{24321428875} a^{3} - \frac{765479643}{24321428875} a^{2} - \frac{694599251}{4864285775} a - \frac{24660061}{194571431}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

$C_{7}$, which has order $7$

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $6$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 5753883.56452 \)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$C_7$ (as 7T1):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A cyclic group of order 7
The 7 conjugacy class representatives for $C_7$
Character table for $C_7$

Intermediate fields

The extension is primitive: there are no intermediate fields between this field and $\Q$.

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type ${\href{/LocalNumberField/2.7.0.1}{7} }$ ${\href{/LocalNumberField/3.7.0.1}{7} }$ ${\href{/LocalNumberField/5.1.0.1}{1} }^{7}$ R ${\href{/LocalNumberField/11.7.0.1}{7} }$ ${\href{/LocalNumberField/13.7.0.1}{7} }$ ${\href{/LocalNumberField/17.7.0.1}{7} }$ ${\href{/LocalNumberField/19.7.0.1}{7} }$ ${\href{/LocalNumberField/23.7.0.1}{7} }$ R ${\href{/LocalNumberField/31.7.0.1}{7} }$ ${\href{/LocalNumberField/37.7.0.1}{7} }$ ${\href{/LocalNumberField/41.7.0.1}{7} }$ ${\href{/LocalNumberField/43.1.0.1}{1} }^{7}$ ${\href{/LocalNumberField/47.7.0.1}{7} }$ ${\href{/LocalNumberField/53.7.0.1}{7} }$ ${\href{/LocalNumberField/59.7.0.1}{7} }$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$7$7.7.12.3$x^{7} - 7 x^{6} + 105$$7$$1$$12$$C_7$$[2]$
$29$29.7.6.1$x^{7} + 232$$7$$1$$6$$C_7$$[\ ]_{7}$