Normalized defining polynomial
\( x^{7} - x^{6} - 25x^{5} + 49x^{4} + 131x^{3} - 415x^{2} + 281x + 7 \)
Invariants
Degree: | $7$ | sage: K.degree()
gp: poldegree(K.pol)
magma: Degree(K);
oscar: degree(K)
| |
Signature: | $[7, 0]$ | sage: K.signature()
gp: K.sign
magma: Signature(K);
oscar: signature(K)
| |
Discriminant: |
\(525346636864\)
\(\medspace = 2^{6}\cdot 7^{4}\cdot 43^{4}\)
| sage: K.disc()
gp: K.disc
magma: OK := Integers(K); Discriminant(OK);
oscar: OK = ring_of_integers(K); discriminant(OK)
| |
Root discriminant: | \(47.24\) | sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
magma: Abs(Discriminant(OK))^(1/Degree(K));
oscar: (1.0 * dK)^(1/degree(K))
| |
Galois root discriminant: | $2^{6/7}7^{2/3}43^{2/3}\approx 81.35858268246776$ | ||
Ramified primes: |
\(2\), \(7\), \(43\)
| sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
magma: PrimeDivisors(Discriminant(OK));
oscar: prime_divisors(discriminant((OK)))
| |
Discriminant root field: | \(\Q\) | ||
$\card{ \Aut(K/\Q) }$: | $1$ | sage: K.automorphisms()
magma: Automorphisms(K);
oscar: automorphisms(K)
| |
This field is not Galois over $\Q$. | |||
This is not a CM field. |
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{2}a^{4}-\frac{1}{2}$, $\frac{1}{2}a^{5}-\frac{1}{2}a$, $\frac{1}{14}a^{6}+\frac{3}{14}a^{5}+\frac{1}{14}a^{4}+\frac{2}{7}a^{3}-\frac{1}{2}a^{2}+\frac{5}{14}a-\frac{1}{2}$
Monogenic: | Not computed | |
Index: | $1$ | |
Inessential primes: | None |
Class group and class number
Trivial group, which has order $1$
Unit group
Rank: | $6$ | sage: UK.rank()
gp: K.fu
magma: UnitRank(K);
oscar: rank(UK)
| |
Torsion generator: |
\( -1 \)
(order $2$)
| sage: UK.torsion_generator()
gp: K.tu[2]
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
oscar: torsion_units_generator(OK)
| |
Fundamental units: |
$\frac{2}{7}a^{6}+\frac{5}{14}a^{5}-\frac{87}{14}a^{4}+\frac{1}{7}a^{3}+36a^{2}-\frac{533}{14}a+\frac{1}{2}$, $\frac{11}{14}a^{6}+\frac{5}{14}a^{5}-\frac{269}{14}a^{4}+\frac{71}{7}a^{3}+\frac{237}{2}a^{2}-\frac{2101}{14}a+\frac{1}{2}$, $\frac{1}{14}a^{6}+\frac{3}{14}a^{5}-\frac{10}{7}a^{4}-\frac{19}{7}a^{3}+\frac{19}{2}a^{2}+\frac{75}{14}a-16$, $\frac{9}{2}a^{6}+3a^{5}-\frac{215}{2}a^{4}+41a^{3}+\frac{1315}{2}a^{2}-767a-\frac{33}{2}$, $\frac{37}{7}a^{6}+\frac{27}{7}a^{5}-\frac{1753}{14}a^{4}+\frac{302}{7}a^{3}+763a^{2}-\frac{6164}{7}a-\frac{41}{2}$, $\frac{18}{7}a^{6}+\frac{12}{7}a^{5}-\frac{853}{14}a^{4}+\frac{163}{7}a^{3}+368a^{2}-\frac{2990}{7}a-\frac{21}{2}$
| sage: UK.fundamental_units()
gp: K.fu
magma: [K|fUK(g): g in Generators(UK)];
oscar: [K(fUK(a)) for a in gens(UK)]
| |
Regulator: | \( 9604.83873841 \) | sage: K.regulator()
gp: K.reg
magma: Regulator(K);
oscar: regulator(K)
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{7}\cdot(2\pi)^{0}\cdot 9604.83873841 \cdot 1}{2\cdot\sqrt{525346636864}}\cr\approx \mathstrut & 0.848100019948 \end{aligned}\]
Galois group
A solvable group of order 21 |
The 5 conjugacy class representatives for $C_7:C_3$ |
Character table for $C_7:C_3$ |
Intermediate fields
The extension is primitive: there are no intermediate fields between this field and $\Q$. |
Sibling fields
Galois closure: | 21.21.13136233521869762226411268456105692626944.1 |
Minimal sibling: | This field is its own minimal sibling |
Frobenius cycle types
$p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycle type | R | ${\href{/padicField/3.7.0.1}{7} }$ | ${\href{/padicField/5.3.0.1}{3} }^{2}{,}\,{\href{/padicField/5.1.0.1}{1} }$ | R | ${\href{/padicField/11.3.0.1}{3} }^{2}{,}\,{\href{/padicField/11.1.0.1}{1} }$ | ${\href{/padicField/13.3.0.1}{3} }^{2}{,}\,{\href{/padicField/13.1.0.1}{1} }$ | ${\href{/padicField/17.3.0.1}{3} }^{2}{,}\,{\href{/padicField/17.1.0.1}{1} }$ | ${\href{/padicField/19.3.0.1}{3} }^{2}{,}\,{\href{/padicField/19.1.0.1}{1} }$ | ${\href{/padicField/23.3.0.1}{3} }^{2}{,}\,{\href{/padicField/23.1.0.1}{1} }$ | ${\href{/padicField/29.3.0.1}{3} }^{2}{,}\,{\href{/padicField/29.1.0.1}{1} }$ | ${\href{/padicField/31.7.0.1}{7} }$ | ${\href{/padicField/37.3.0.1}{3} }^{2}{,}\,{\href{/padicField/37.1.0.1}{1} }$ | ${\href{/padicField/41.7.0.1}{7} }$ | R | ${\href{/padicField/47.3.0.1}{3} }^{2}{,}\,{\href{/padicField/47.1.0.1}{1} }$ | ${\href{/padicField/53.7.0.1}{7} }$ | ${\href{/padicField/59.3.0.1}{3} }^{2}{,}\,{\href{/padicField/59.1.0.1}{1} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
$p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
---|---|---|---|---|---|---|---|
\(2\)
| 2.7.6.1 | $x^{7} + 2$ | $7$ | $1$ | $6$ | $C_7:C_3$ | $[\ ]_{7}^{3}$ |
\(7\)
| $\Q_{7}$ | $x + 4$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
7.3.2.3 | $x^{3} + 21$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
7.3.2.3 | $x^{3} + 21$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
\(43\)
| $\Q_{43}$ | $x + 40$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
43.3.2.1 | $x^{3} + 43$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
43.3.2.1 | $x^{3} + 43$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ |
Artin representations
Label | Dimension | Conductor | Artin stem field | $G$ | Ind | $\chi(c)$ | |
---|---|---|---|---|---|---|---|
* | 1.1.1t1.a.a | $1$ | $1$ | \(\Q\) | $C_1$ | $1$ | $1$ |
1.301.3t1.b.a | $1$ | $ 7 \cdot 43 $ | 3.3.90601.1 | $C_3$ (as 3T1) | $0$ | $1$ | |
1.301.3t1.b.b | $1$ | $ 7 \cdot 43 $ | 3.3.90601.1 | $C_3$ (as 3T1) | $0$ | $1$ | |
* | 3.724808.7t3.a.a | $3$ | $ 2^{3} \cdot 7^{2} \cdot 43^{2}$ | 7.7.525346636864.1 | $C_7:C_3$ (as 7T3) | $0$ | $3$ |
* | 3.724808.7t3.a.b | $3$ | $ 2^{3} \cdot 7^{2} \cdot 43^{2}$ | 7.7.525346636864.1 | $C_7:C_3$ (as 7T3) | $0$ | $3$ |