Normalized defining polynomial
\( x^{7} - 47x^{5} - 9x^{4} + 529x^{3} + 392x^{2} - 1115x - 1079 \)
Invariants
Degree: | $7$ | sage: K.degree()
gp: poldegree(K.pol)
magma: Degree(K);
oscar: degree(K)
| |
Signature: | $[7, 0]$ | sage: K.signature()
gp: K.sign
magma: Signature(K);
oscar: signature(K)
| |
Discriminant: |
\(523361201113921\)
\(\medspace = 4783^{4}\)
| sage: K.disc()
gp: K.disc
magma: OK := Integers(K); Discriminant(OK);
oscar: OK = ring_of_integers(K); discriminant(OK)
| |
Root discriminant: | \(126.67\) | sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
magma: Abs(Discriminant(OK))^(1/Degree(K));
oscar: (1.0 * dK)^(1/degree(K))
| |
Galois root discriminant: | $4783^{2/3}\approx 283.879209526855$ | ||
Ramified primes: |
\(4783\)
| sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
magma: PrimeDivisors(Discriminant(OK));
oscar: prime_divisors(discriminant((OK)))
| |
Discriminant root field: | \(\Q\) | ||
$\card{ \Aut(K/\Q) }$: | $1$ | sage: K.automorphisms()
magma: Automorphisms(K);
oscar: automorphisms(K)
| |
This field is not Galois over $\Q$. | |||
This is not a CM field. |
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{2}a^{4}-\frac{1}{2}a^{3}-\frac{1}{2}a^{2}-\frac{1}{2}$, $\frac{1}{4}a^{5}-\frac{1}{2}a^{3}-\frac{1}{4}a^{2}-\frac{1}{4}a-\frac{1}{4}$, $\frac{1}{6872}a^{6}+\frac{469}{6872}a^{5}+\frac{5}{3436}a^{4}-\frac{2191}{6872}a^{3}-\frac{1561}{3436}a^{2}-\frac{45}{3436}a-\frac{2093}{6872}$
Monogenic: | Not computed | |
Index: | $1$ | |
Inessential primes: | None |
Class group and class number
Trivial group, which has order $1$
Unit group
Rank: | $6$ | sage: UK.rank()
gp: K.fu
magma: UnitRank(K);
oscar: rank(UK)
| |
Torsion generator: |
\( -1 \)
(order $2$)
| sage: UK.torsion_generator()
gp: K.tu[2]
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
oscar: torsion_units_generator(OK)
| |
Fundamental units: |
$\frac{19}{3436}a^{6}+\frac{321}{3436}a^{5}+\frac{95}{1718}a^{4}-\frac{7269}{3436}a^{3}-\frac{1515}{859}a^{2}+\frac{4297}{859}a+\frac{16927}{3436}$, $\frac{21}{1718}a^{6}-\frac{59}{3436}a^{5}-\frac{649}{1718}a^{4}+\frac{375}{1718}a^{3}-\frac{3133}{3436}a^{2}+\frac{40029}{3436}a+\frac{71009}{3436}$, $\frac{4753}{3436}a^{6}-\frac{1705}{859}a^{5}-\frac{106803}{1718}a^{4}+\frac{263547}{3436}a^{3}+\frac{2137551}{3436}a^{2}-\frac{1205165}{3436}a-\frac{893777}{859}$, $\frac{29}{3436}a^{6}-\frac{143}{3436}a^{5}-\frac{357}{859}a^{4}+\frac{3463}{3436}a^{3}+\frac{4424}{859}a^{2}-\frac{4741}{1718}a-\frac{34927}{3436}$, $\frac{41}{3436}a^{6}-\frac{132}{859}a^{5}+\frac{205}{1718}a^{4}+\frac{14967}{3436}a^{3}-\frac{42961}{3436}a^{2}-\frac{25165}{3436}a+\frac{23859}{859}$, $\frac{347}{6872}a^{6}-\frac{3903}{6872}a^{5}-\frac{10291}{3436}a^{4}+\frac{133083}{6872}a^{3}+\frac{77491}{1718}a^{2}-\frac{44921}{859}a-\frac{700501}{6872}$
| sage: UK.fundamental_units()
gp: K.fu
magma: [K|fUK(g): g in Generators(UK)];
oscar: [K(fUK(a)) for a in gens(UK)]
| |
Regulator: | \( 199659.43561 \) | sage: K.regulator()
gp: K.reg
magma: Regulator(K);
oscar: regulator(K)
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{7}\cdot(2\pi)^{0}\cdot 199659.43561 \cdot 1}{2\cdot\sqrt{523361201113921}}\cr\approx \mathstrut & 0.55855899669 \end{aligned}\]
Galois group
A solvable group of order 21 |
The 5 conjugacy class representatives for $C_7:C_3$ |
Character table for $C_7:C_3$ |
Intermediate fields
The extension is primitive: there are no intermediate fields between this field and $\Q$. |
Sibling fields
Galois closure: | deg 21 |
Minimal sibling: | This field is its own minimal sibling |
Frobenius cycle types
$p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycle type | ${\href{/padicField/2.3.0.1}{3} }^{2}{,}\,{\href{/padicField/2.1.0.1}{1} }$ | ${\href{/padicField/3.7.0.1}{7} }$ | ${\href{/padicField/5.7.0.1}{7} }$ | ${\href{/padicField/7.7.0.1}{7} }$ | ${\href{/padicField/11.3.0.1}{3} }^{2}{,}\,{\href{/padicField/11.1.0.1}{1} }$ | ${\href{/padicField/13.3.0.1}{3} }^{2}{,}\,{\href{/padicField/13.1.0.1}{1} }$ | ${\href{/padicField/17.7.0.1}{7} }$ | ${\href{/padicField/19.3.0.1}{3} }^{2}{,}\,{\href{/padicField/19.1.0.1}{1} }$ | ${\href{/padicField/23.7.0.1}{7} }$ | ${\href{/padicField/29.3.0.1}{3} }^{2}{,}\,{\href{/padicField/29.1.0.1}{1} }$ | ${\href{/padicField/31.7.0.1}{7} }$ | ${\href{/padicField/37.7.0.1}{7} }$ | ${\href{/padicField/41.3.0.1}{3} }^{2}{,}\,{\href{/padicField/41.1.0.1}{1} }$ | ${\href{/padicField/43.3.0.1}{3} }^{2}{,}\,{\href{/padicField/43.1.0.1}{1} }$ | ${\href{/padicField/47.3.0.1}{3} }^{2}{,}\,{\href{/padicField/47.1.0.1}{1} }$ | ${\href{/padicField/53.3.0.1}{3} }^{2}{,}\,{\href{/padicField/53.1.0.1}{1} }$ | ${\href{/padicField/59.3.0.1}{3} }^{2}{,}\,{\href{/padicField/59.1.0.1}{1} }$ |
Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
$p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
---|---|---|---|---|---|---|---|
\(4783\)
| $\Q_{4783}$ | $x$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
Deg $3$ | $3$ | $1$ | $2$ | ||||
Deg $3$ | $3$ | $1$ | $2$ |