Normalized defining polynomial
\( x^{7} - 70x^{5} - 42x^{4} + 1316x^{3} + 1428x^{2} - 2912x - 1940 \)
Invariants
Degree: | $7$ | sage: K.degree()
gp: poldegree(K.pol)
magma: Degree(K);
oscar: degree(K)
| |
Signature: | $[7, 0]$ | sage: K.signature()
gp: K.sign
magma: Signature(K);
oscar: signature(K)
| |
Discriminant: |
\(48081576391744\)
\(\medspace = 2^{6}\cdot 7^{8}\cdot 19^{4}\)
| sage: K.disc()
gp: K.disc
magma: OK := Integers(K); Discriminant(OK);
oscar: OK = ring_of_integers(K); discriminant(OK)
| |
Root discriminant: | \(90.07\) | sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
magma: Abs(Discriminant(OK))^(1/Degree(K));
oscar: (1.0 * dK)^(1/degree(K))
| |
Galois root discriminant: | $2^{6/7}7^{26/21}19^{2/3}\approx 143.49605786761867$ | ||
Ramified primes: |
\(2\), \(7\), \(19\)
| sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
magma: PrimeDivisors(Discriminant(OK));
oscar: prime_divisors(discriminant((OK)))
| |
Discriminant root field: | \(\Q\) | ||
$\card{ \Aut(K/\Q) }$: | $1$ | sage: K.automorphisms()
magma: Automorphisms(K);
oscar: automorphisms(K)
| |
This field is not Galois over $\Q$. | |||
This is not a CM field. |
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{38}a^{4}+\frac{6}{19}a^{3}-\frac{6}{19}a^{2}-\frac{7}{19}a-\frac{8}{19}$, $\frac{1}{38}a^{5}-\frac{2}{19}a^{3}+\frac{8}{19}a^{2}+\frac{1}{19}$, $\frac{1}{722}a^{6}+\frac{2}{361}a^{5}+\frac{3}{722}a^{4}-\frac{148}{361}a^{3}+\frac{161}{361}a^{2}+\frac{161}{361}a-\frac{33}{361}$
Monogenic: | Not computed | |
Index: | $1$ | |
Inessential primes: | None |
Class group and class number
Trivial group, which has order $1$
Unit group
Rank: | $6$ | sage: UK.rank()
gp: K.fu
magma: UnitRank(K);
oscar: rank(UK)
| |
Torsion generator: |
\( -1 \)
(order $2$)
| sage: UK.torsion_generator()
gp: K.tu[2]
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
oscar: torsion_units_generator(OK)
| |
Fundamental units: |
$\frac{1}{38}a^{5}-\frac{3}{19}a^{4}-a^{3}+\frac{101}{19}a^{2}+\frac{137}{19}a-\frac{369}{19}$, $\frac{2}{361}a^{6}-\frac{3}{722}a^{5}-\frac{197}{722}a^{4}-\frac{3}{361}a^{3}+\frac{1024}{361}a^{2}+\frac{302}{361}a-\frac{2089}{361}$, $\frac{9}{361}a^{6}-\frac{23}{722}a^{5}-\frac{1181}{722}a^{4}+\frac{224}{361}a^{3}+\frac{10631}{361}a^{2}+\frac{4323}{361}a-\frac{26187}{361}$, $\frac{9}{722}a^{6}-\frac{21}{722}a^{5}-\frac{167}{361}a^{4}+\frac{226}{361}a^{3}+\frac{632}{361}a^{2}+\frac{5}{361}a+\frac{7}{361}$, $\frac{79}{722}a^{6}-\frac{425}{722}a^{5}-\frac{3259}{722}a^{4}+\frac{7080}{361}a^{3}+\frac{14410}{361}a^{2}-\frac{19486}{361}a-\frac{18339}{361}$, $\frac{9}{722}a^{6}+\frac{17}{722}a^{5}-\frac{300}{361}a^{4}-\frac{724}{361}a^{3}+\frac{4698}{361}a^{2}+\frac{14141}{361}a+\frac{7949}{361}$
| sage: UK.fundamental_units()
gp: K.fu
magma: [K|fUK(g): g in Generators(UK)];
oscar: [K(fUK(a)) for a in gens(UK)]
| |
Regulator: | \( 74888.0955702 \) | sage: K.regulator()
gp: K.reg
magma: Regulator(K);
oscar: regulator(K)
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{7}\cdot(2\pi)^{0}\cdot 74888.0955702 \cdot 1}{2\cdot\sqrt{48081576391744}}\cr\approx \mathstrut & 0.691199493934 \end{aligned}\]
Galois group
A solvable group of order 21 |
The 5 conjugacy class representatives for $C_7:C_3$ |
Character table for $C_7:C_3$ |
Intermediate fields
The extension is primitive: there are no intermediate fields between this field and $\Q$. |
Sibling fields
Galois closure: | deg 21 |
Minimal sibling: | This field is its own minimal sibling |
Frobenius cycle types
$p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycle type | R | ${\href{/padicField/3.7.0.1}{7} }$ | ${\href{/padicField/5.3.0.1}{3} }^{2}{,}\,{\href{/padicField/5.1.0.1}{1} }$ | R | ${\href{/padicField/11.3.0.1}{3} }^{2}{,}\,{\href{/padicField/11.1.0.1}{1} }$ | ${\href{/padicField/13.3.0.1}{3} }^{2}{,}\,{\href{/padicField/13.1.0.1}{1} }$ | ${\href{/padicField/17.7.0.1}{7} }$ | R | ${\href{/padicField/23.7.0.1}{7} }$ | ${\href{/padicField/29.3.0.1}{3} }^{2}{,}\,{\href{/padicField/29.1.0.1}{1} }$ | ${\href{/padicField/31.3.0.1}{3} }^{2}{,}\,{\href{/padicField/31.1.0.1}{1} }$ | ${\href{/padicField/37.3.0.1}{3} }^{2}{,}\,{\href{/padicField/37.1.0.1}{1} }$ | ${\href{/padicField/41.3.0.1}{3} }^{2}{,}\,{\href{/padicField/41.1.0.1}{1} }$ | ${\href{/padicField/43.3.0.1}{3} }^{2}{,}\,{\href{/padicField/43.1.0.1}{1} }$ | ${\href{/padicField/47.7.0.1}{7} }$ | ${\href{/padicField/53.3.0.1}{3} }^{2}{,}\,{\href{/padicField/53.1.0.1}{1} }$ | ${\href{/padicField/59.7.0.1}{7} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
$p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
---|---|---|---|---|---|---|---|
\(2\)
| 2.7.6.1 | $x^{7} + 2$ | $7$ | $1$ | $6$ | $C_7:C_3$ | $[\ ]_{7}^{3}$ |
\(7\)
| 7.7.8.3 | $x^{7} + 28 x^{2} + 7$ | $7$ | $1$ | $8$ | $C_7:C_3$ | $[4/3]_{3}$ |
\(19\)
| $\Q_{19}$ | $x + 17$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
19.3.2.3 | $x^{3} + 38$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
19.3.2.3 | $x^{3} + 38$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ |
Artin representations
Label | Dimension | Conductor | Artin stem field | $G$ | Ind | $\chi(c)$ | |
---|---|---|---|---|---|---|---|
* | 1.1.1t1.a.a | $1$ | $1$ | \(\Q\) | $C_1$ | $1$ | $1$ |
1.133.3t1.a.a | $1$ | $ 7 \cdot 19 $ | 3.3.17689.1 | $C_3$ (as 3T1) | $0$ | $1$ | |
1.133.3t1.a.b | $1$ | $ 7 \cdot 19 $ | 3.3.17689.1 | $C_3$ (as 3T1) | $0$ | $1$ | |
* | 3.6934088.7t3.a.a | $3$ | $ 2^{3} \cdot 7^{4} \cdot 19^{2}$ | 7.7.48081576391744.1 | $C_7:C_3$ (as 7T3) | $0$ | $3$ |
* | 3.6934088.7t3.a.b | $3$ | $ 2^{3} \cdot 7^{4} \cdot 19^{2}$ | 7.7.48081576391744.1 | $C_7:C_3$ (as 7T3) | $0$ | $3$ |