Properties

Label 7.7.42855577.1
Degree $7$
Signature $[7, 0]$
Discriminant $197\cdot 211\cdot 1031$
Root discriminant $12.31$
Ramified primes $197, 211, 1031$
Class number $1$
Class group Trivial
Galois group $S_7$ (as 7T7)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-1, -4, 2, 14, 3, -7, -1, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^7 - x^6 - 7*x^5 + 3*x^4 + 14*x^3 + 2*x^2 - 4*x - 1)
 
gp: K = bnfinit(x^7 - x^6 - 7*x^5 + 3*x^4 + 14*x^3 + 2*x^2 - 4*x - 1, 1)
 

Normalized defining polynomial

\( x^{7} - x^{6} - 7 x^{5} + 3 x^{4} + 14 x^{3} + 2 x^{2} - 4 x - 1 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $7$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[7, 0]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(42855577=197\cdot 211\cdot 1031\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $12.31$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $197, 211, 1031$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

Trivial group, which has order $1$

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $6$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  \( a \),  \( a^{6} - a^{5} - 7 a^{4} + 4 a^{3} + 13 a^{2} - a - 3 \),  \( a^{6} - a^{5} - 7 a^{4} + 3 a^{3} + 14 a^{2} + 2 a - 3 \),  \( a^{6} - a^{5} - 7 a^{4} + 4 a^{3} + 13 a^{2} - 2 a - 3 \),  \( 2 a^{6} - 3 a^{5} - 12 a^{4} + 12 a^{3} + 20 a^{2} - 7 a - 4 \),  \( a^{3} - a^{2} - 3 a \)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 23.0470162908 \)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$S_7$ (as 7T7):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A non-solvable group of order 5040
The 15 conjugacy class representatives for $S_7$
Character table for $S_7$

Intermediate fields

The extension is primitive: there are no intermediate fields between this field and $\Q$.

Sibling fields

Degree 14 sibling: Deg 14
Degree 21 sibling: Deg 21
Degree 30 sibling: data not computed
Degree 35 sibling: data not computed
Degree 42 siblings: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type ${\href{/LocalNumberField/2.7.0.1}{7} }$ ${\href{/LocalNumberField/3.7.0.1}{7} }$ ${\href{/LocalNumberField/5.4.0.1}{4} }{,}\,{\href{/LocalNumberField/5.3.0.1}{3} }$ ${\href{/LocalNumberField/7.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/7.1.0.1}{1} }$ ${\href{/LocalNumberField/11.5.0.1}{5} }{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }$ ${\href{/LocalNumberField/13.6.0.1}{6} }{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }$ ${\href{/LocalNumberField/17.4.0.1}{4} }{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }^{3}$ ${\href{/LocalNumberField/19.5.0.1}{5} }{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }$ ${\href{/LocalNumberField/23.4.0.1}{4} }{,}\,{\href{/LocalNumberField/23.3.0.1}{3} }$ ${\href{/LocalNumberField/29.5.0.1}{5} }{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }$ ${\href{/LocalNumberField/31.5.0.1}{5} }{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }$ ${\href{/LocalNumberField/37.4.0.1}{4} }{,}\,{\href{/LocalNumberField/37.3.0.1}{3} }$ ${\href{/LocalNumberField/41.7.0.1}{7} }$ ${\href{/LocalNumberField/43.5.0.1}{5} }{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{2}$ ${\href{/LocalNumberField/47.4.0.1}{4} }{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }$ ${\href{/LocalNumberField/53.4.0.1}{4} }{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }$ ${\href{/LocalNumberField/59.6.0.1}{6} }{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }$

Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$197$$\Q_{197}$$x + 2$$1$$1$$0$Trivial$[\ ]$
197.2.1.2$x^{2} + 394$$2$$1$$1$$C_2$$[\ ]_{2}$
197.4.0.1$x^{4} - x + 18$$1$$4$$0$$C_4$$[\ ]^{4}$
211Data not computed
1031Data not computed

Artin representations

Label Dimension Conductor Defining polynomial of Artin field $G$ Ind $\chi(c)$
* 1.1.1t1.1c1$1$ $1$ $x$ $C_1$ $1$ $1$
1.197_211_1031.2t1.1c1$1$ $ 197 \cdot 211 \cdot 1031 $ $x^{2} - x - 10713894$ $C_2$ (as 2T1) $1$ $1$
6.197e5_211e5_1031e5.14t46.1c1$6$ $ 197^{5} \cdot 211^{5} \cdot 1031^{5}$ $x^{7} - x^{6} - 7 x^{5} + 3 x^{4} + 14 x^{3} + 2 x^{2} - 4 x - 1$ $S_7$ (as 7T7) $1$ $6$
* 6.197_211_1031.7t7.1c1$6$ $ 197 \cdot 211 \cdot 1031 $ $x^{7} - x^{6} - 7 x^{5} + 3 x^{4} + 14 x^{3} + 2 x^{2} - 4 x - 1$ $S_7$ (as 7T7) $1$ $6$
14.197e4_211e4_1031e4.21t38.1c1$14$ $ 197^{4} \cdot 211^{4} \cdot 1031^{4}$ $x^{7} - x^{6} - 7 x^{5} + 3 x^{4} + 14 x^{3} + 2 x^{2} - 4 x - 1$ $S_7$ (as 7T7) $1$ $14$
14.197e10_211e10_1031e10.42t413.1c1$14$ $ 197^{10} \cdot 211^{10} \cdot 1031^{10}$ $x^{7} - x^{6} - 7 x^{5} + 3 x^{4} + 14 x^{3} + 2 x^{2} - 4 x - 1$ $S_7$ (as 7T7) $1$ $14$
14.197e9_211e9_1031e9.30t565.1c1$14$ $ 197^{9} \cdot 211^{9} \cdot 1031^{9}$ $x^{7} - x^{6} - 7 x^{5} + 3 x^{4} + 14 x^{3} + 2 x^{2} - 4 x - 1$ $S_7$ (as 7T7) $1$ $14$
14.197e5_211e5_1031e5.30t565.1c1$14$ $ 197^{5} \cdot 211^{5} \cdot 1031^{5}$ $x^{7} - x^{6} - 7 x^{5} + 3 x^{4} + 14 x^{3} + 2 x^{2} - 4 x - 1$ $S_7$ (as 7T7) $1$ $14$
15.197e5_211e5_1031e5.42t412.1c1$15$ $ 197^{5} \cdot 211^{5} \cdot 1031^{5}$ $x^{7} - x^{6} - 7 x^{5} + 3 x^{4} + 14 x^{3} + 2 x^{2} - 4 x - 1$ $S_7$ (as 7T7) $1$ $15$
15.197e10_211e10_1031e10.42t411.1c1$15$ $ 197^{10} \cdot 211^{10} \cdot 1031^{10}$ $x^{7} - x^{6} - 7 x^{5} + 3 x^{4} + 14 x^{3} + 2 x^{2} - 4 x - 1$ $S_7$ (as 7T7) $1$ $15$
20.197e10_211e10_1031e10.70.1c1$20$ $ 197^{10} \cdot 211^{10} \cdot 1031^{10}$ $x^{7} - x^{6} - 7 x^{5} + 3 x^{4} + 14 x^{3} + 2 x^{2} - 4 x - 1$ $S_7$ (as 7T7) $1$ $20$
21.197e10_211e10_1031e10.84.1c1$21$ $ 197^{10} \cdot 211^{10} \cdot 1031^{10}$ $x^{7} - x^{6} - 7 x^{5} + 3 x^{4} + 14 x^{3} + 2 x^{2} - 4 x - 1$ $S_7$ (as 7T7) $1$ $21$
21.197e11_211e11_1031e11.42t418.1c1$21$ $ 197^{11} \cdot 211^{11} \cdot 1031^{11}$ $x^{7} - x^{6} - 7 x^{5} + 3 x^{4} + 14 x^{3} + 2 x^{2} - 4 x - 1$ $S_7$ (as 7T7) $1$ $21$
35.197e20_211e20_1031e20.126.1c1$35$ $ 197^{20} \cdot 211^{20} \cdot 1031^{20}$ $x^{7} - x^{6} - 7 x^{5} + 3 x^{4} + 14 x^{3} + 2 x^{2} - 4 x - 1$ $S_7$ (as 7T7) $1$ $35$
35.197e15_211e15_1031e15.70.1c1$35$ $ 197^{15} \cdot 211^{15} \cdot 1031^{15}$ $x^{7} - x^{6} - 7 x^{5} + 3 x^{4} + 14 x^{3} + 2 x^{2} - 4 x - 1$ $S_7$ (as 7T7) $1$ $35$

Data is given for all irreducible representations of the Galois group for the Galois closure of this field. Those marked with * are summands in the permutation representation coming from this field. Representations which appear with multiplicity greater than one are indicated by exponents on the *.