Normalized defining polynomial
\( x^{7} - 2x^{6} - 47x^{5} + 47x^{4} + 430x^{3} - 216x^{2} - 200x + 96 \)
Invariants
Degree: | $7$ | sage: K.degree()
gp: poldegree(K.pol)
magma: Degree(K);
oscar: degree(K)
| |
Signature: | $[7, 0]$ | sage: K.signature()
gp: K.sign
magma: Signature(K);
oscar: signature(K)
| |
Discriminant: |
\(42748699986001\)
\(\medspace = 2557^{4}\)
| sage: K.disc()
gp: K.disc
magma: OK := Integers(K); Discriminant(OK);
oscar: OK = ring_of_integers(K); discriminant(OK)
| |
Root discriminant: | \(88.57\) | sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
magma: Abs(Discriminant(OK))^(1/Degree(K));
oscar: (1.0 * dK)^(1/degree(K))
| |
Galois root discriminant: | $2557^{2/3}\approx 186.99090578896957$ | ||
Ramified primes: |
\(2557\)
| sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
magma: PrimeDivisors(Discriminant(OK));
oscar: prime_divisors(discriminant((OK)))
| |
Discriminant root field: | \(\Q\) | ||
$\card{ \Aut(K/\Q) }$: | $1$ | sage: K.automorphisms()
magma: Automorphisms(K);
oscar: automorphisms(K)
| |
This field is not Galois over $\Q$. | |||
This is not a CM field. |
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{6}a^{4}+\frac{1}{3}a^{3}-\frac{1}{2}a^{2}+\frac{1}{6}a$, $\frac{1}{12}a^{5}+\frac{5}{12}a^{3}+\frac{1}{12}a^{2}+\frac{1}{3}a$, $\frac{1}{2424}a^{6}-\frac{5}{404}a^{5}-\frac{5}{808}a^{4}-\frac{383}{808}a^{3}+\frac{545}{1212}a^{2}-\frac{4}{303}a+\frac{29}{101}$
Monogenic: | Not computed | |
Index: | $1$ | |
Inessential primes: | None |
Class group and class number
Trivial group, which has order $1$
Unit group
Rank: | $6$ | sage: UK.rank()
gp: K.fu
magma: UnitRank(K);
oscar: rank(UK)
| |
Torsion generator: |
\( -1 \)
(order $2$)
| sage: UK.torsion_generator()
gp: K.tu[2]
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
oscar: torsion_units_generator(OK)
| |
Fundamental units: |
$\frac{21}{808}a^{6}-\frac{3}{101}a^{5}-\frac{2965}{2424}a^{4}+\frac{535}{2424}a^{3}+\frac{2137}{202}a^{2}+\frac{809}{606}a-\frac{395}{101}$, $\frac{9}{404}a^{6}-\frac{103}{1212}a^{5}-\frac{337}{404}a^{4}+\frac{703}{303}a^{3}+\frac{4079}{1212}a^{2}-\frac{2351}{606}a+\frac{51}{101}$, $\frac{1247}{1212}a^{6}-\frac{929}{606}a^{5}-\frac{59509}{1212}a^{4}+\frac{28061}{1212}a^{3}+\frac{274403}{606}a^{2}+\frac{1287}{101}a-\frac{19685}{101}$, $\frac{133}{1212}a^{6}-\frac{59}{202}a^{5}-\frac{6035}{1212}a^{4}+\frac{9995}{1212}a^{3}+\frac{25217}{606}a^{2}-\frac{14497}{303}a+\frac{1149}{101}$, $\frac{191}{1212}a^{6}-\frac{175}{1212}a^{5}-\frac{8723}{1212}a^{4}+\frac{18}{101}a^{3}+\frac{64063}{1212}a^{2}-\frac{8207}{606}a-\frac{2355}{101}$, $\frac{389}{303}a^{6}-\frac{407}{202}a^{5}-\frac{18460}{303}a^{4}+\frac{19421}{606}a^{3}+\frac{341101}{606}a^{2}-\frac{3257}{303}a-\frac{26205}{101}$
| sage: UK.fundamental_units()
gp: K.fu
magma: [K|fUK(g): g in Generators(UK)];
oscar: [K(fUK(a)) for a in gens(UK)]
| |
Regulator: | \( 139632.45493 \) | sage: K.regulator()
gp: K.reg
magma: Regulator(K);
oscar: regulator(K)
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{7}\cdot(2\pi)^{0}\cdot 139632.45493 \cdot 1}{2\cdot\sqrt{42748699986001}}\cr\approx \mathstrut & 1.3667997526 \end{aligned}\]
Galois group
A solvable group of order 21 |
The 5 conjugacy class representatives for $C_7:C_3$ |
Character table for $C_7:C_3$ |
Intermediate fields
The extension is primitive: there are no intermediate fields between this field and $\Q$. |
Sibling fields
Galois closure: | deg 21 |
Minimal sibling: | This field is its own minimal sibling |
Frobenius cycle types
$p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycle type | ${\href{/padicField/2.3.0.1}{3} }^{2}{,}\,{\href{/padicField/2.1.0.1}{1} }$ | ${\href{/padicField/3.3.0.1}{3} }^{2}{,}\,{\href{/padicField/3.1.0.1}{1} }$ | ${\href{/padicField/5.3.0.1}{3} }^{2}{,}\,{\href{/padicField/5.1.0.1}{1} }$ | ${\href{/padicField/7.3.0.1}{3} }^{2}{,}\,{\href{/padicField/7.1.0.1}{1} }$ | ${\href{/padicField/11.3.0.1}{3} }^{2}{,}\,{\href{/padicField/11.1.0.1}{1} }$ | ${\href{/padicField/13.3.0.1}{3} }^{2}{,}\,{\href{/padicField/13.1.0.1}{1} }$ | ${\href{/padicField/17.3.0.1}{3} }^{2}{,}\,{\href{/padicField/17.1.0.1}{1} }$ | ${\href{/padicField/19.3.0.1}{3} }^{2}{,}\,{\href{/padicField/19.1.0.1}{1} }$ | ${\href{/padicField/23.3.0.1}{3} }^{2}{,}\,{\href{/padicField/23.1.0.1}{1} }$ | ${\href{/padicField/29.3.0.1}{3} }^{2}{,}\,{\href{/padicField/29.1.0.1}{1} }$ | ${\href{/padicField/31.3.0.1}{3} }^{2}{,}\,{\href{/padicField/31.1.0.1}{1} }$ | ${\href{/padicField/37.3.0.1}{3} }^{2}{,}\,{\href{/padicField/37.1.0.1}{1} }$ | ${\href{/padicField/41.3.0.1}{3} }^{2}{,}\,{\href{/padicField/41.1.0.1}{1} }$ | ${\href{/padicField/43.3.0.1}{3} }^{2}{,}\,{\href{/padicField/43.1.0.1}{1} }$ | ${\href{/padicField/47.3.0.1}{3} }^{2}{,}\,{\href{/padicField/47.1.0.1}{1} }$ | ${\href{/padicField/53.7.0.1}{7} }$ | ${\href{/padicField/59.3.0.1}{3} }^{2}{,}\,{\href{/padicField/59.1.0.1}{1} }$ |
Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
$p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
---|---|---|---|---|---|---|---|
\(2557\)
| $\Q_{2557}$ | $x$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
Deg $3$ | $3$ | $1$ | $2$ | ||||
Deg $3$ | $3$ | $1$ | $2$ |
Artin representations
Label | Dimension | Conductor | Artin stem field | $G$ | Ind | $\chi(c)$ | |
---|---|---|---|---|---|---|---|
* | 1.1.1t1.a.a | $1$ | $1$ | \(\Q\) | $C_1$ | $1$ | $1$ |
1.2557.3t1.a.a | $1$ | $ 2557 $ | 3.3.6538249.1 | $C_3$ (as 3T1) | $0$ | $1$ | |
1.2557.3t1.a.b | $1$ | $ 2557 $ | 3.3.6538249.1 | $C_3$ (as 3T1) | $0$ | $1$ | |
* | 3.6538249.7t3.a.a | $3$ | $ 2557^{2}$ | 7.7.42748699986001.1 | $C_7:C_3$ (as 7T3) | $0$ | $3$ |
* | 3.6538249.7t3.a.b | $3$ | $ 2557^{2}$ | 7.7.42748699986001.1 | $C_7:C_3$ (as 7T3) | $0$ | $3$ |