Normalized defining polynomial
\( x^{7} - 18x^{5} - 18x^{4} + 60x^{3} + 96x^{2} + 44x + 6 \)
Invariants
Degree: | $7$ | sage: K.degree()
gp: poldegree(K.pol)
magma: Degree(K);
oscar: degree(K)
| |
Signature: | $[7, 0]$ | sage: K.signature()
gp: K.sign
magma: Signature(K);
oscar: signature(K)
| |
Discriminant: |
\(387790161984\)
\(\medspace = 2^{6}\cdot 3^{8}\cdot 31^{4}\)
| sage: K.disc()
gp: K.disc
magma: OK := Integers(K); Discriminant(OK);
oscar: OK = ring_of_integers(K); discriminant(OK)
| |
Root discriminant: | \(45.24\) | sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
magma: Abs(Discriminant(OK))^(1/Degree(K));
oscar: (1.0 * dK)^(1/degree(K))
| |
Galois root discriminant: | $2^{6/7}3^{4/3}31^{2/3}\approx 77.34433552870686$ | ||
Ramified primes: |
\(2\), \(3\), \(31\)
| sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
magma: PrimeDivisors(Discriminant(OK));
oscar: prime_divisors(discriminant((OK)))
| |
Discriminant root field: | \(\Q\) | ||
$\card{ \Aut(K/\Q) }$: | $1$ | sage: K.automorphisms()
magma: Automorphisms(K);
oscar: automorphisms(K)
| |
This field is not Galois over $\Q$. | |||
This is not a CM field. |
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{3}a^{6}+\frac{1}{3}a^{5}+\frac{1}{3}a^{4}+\frac{1}{3}a^{3}+\frac{1}{3}a^{2}+\frac{1}{3}a$
Monogenic: | Not computed | |
Index: | $1$ | |
Inessential primes: | None |
Class group and class number
Trivial group, which has order $1$
Unit group
Rank: | $6$ | sage: UK.rank()
gp: K.fu
magma: UnitRank(K);
oscar: rank(UK)
| |
Torsion generator: |
\( -1 \)
(order $2$)
| sage: UK.torsion_generator()
gp: K.tu[2]
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
oscar: torsion_units_generator(OK)
| |
Fundamental units: |
$\frac{1}{3}a^{6}+\frac{1}{3}a^{5}-\frac{20}{3}a^{4}-\frac{32}{3}a^{3}+\frac{70}{3}a^{2}+\frac{139}{3}a+17$, $a^{6}-19a^{4}-15a^{3}+70a^{2}+81a+19$, $9a^{6}-3a^{5}-161a^{4}-108a^{3}+575a^{2}+669a+179$, $a^{5}-3a^{4}-11a^{3}+19a^{2}+26a+5$, $\frac{46}{3}a^{6}-\frac{11}{3}a^{5}-\frac{827}{3}a^{4}-\frac{626}{3}a^{3}+\frac{2929}{3}a^{2}+\frac{3691}{3}a+365$, $\frac{55}{3}a^{6}-\frac{29}{3}a^{5}-\frac{977}{3}a^{4}-\frac{479}{3}a^{3}+\frac{3583}{3}a^{2}+\frac{3484}{3}a+219$
| sage: UK.fundamental_units()
gp: K.fu
magma: [K|fUK(g): g in Generators(UK)];
oscar: [K(fUK(a)) for a in gens(UK)]
| |
Regulator: | \( 13908.2008402 \) | sage: K.regulator()
gp: K.reg
magma: Regulator(K);
oscar: regulator(K)
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{7}\cdot(2\pi)^{0}\cdot 13908.2008402 \cdot 1}{2\cdot\sqrt{387790161984}}\cr\approx \mathstrut & 1.42939590603 \end{aligned}\]
Galois group
A solvable group of order 21 |
The 5 conjugacy class representatives for $C_7:C_3$ |
Character table for $C_7:C_3$ |
Intermediate fields
The extension is primitive: there are no intermediate fields between this field and $\Q$. |
Sibling fields
Galois closure: | 21.21.4539403286895028130634165104558075019264.1 |
Minimal sibling: | This field is its own minimal sibling |
Frobenius cycle types
$p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycle type | R | R | ${\href{/padicField/5.7.0.1}{7} }$ | ${\href{/padicField/7.7.0.1}{7} }$ | ${\href{/padicField/11.3.0.1}{3} }^{2}{,}\,{\href{/padicField/11.1.0.1}{1} }$ | ${\href{/padicField/13.7.0.1}{7} }$ | ${\href{/padicField/17.3.0.1}{3} }^{2}{,}\,{\href{/padicField/17.1.0.1}{1} }$ | ${\href{/padicField/19.3.0.1}{3} }^{2}{,}\,{\href{/padicField/19.1.0.1}{1} }$ | ${\href{/padicField/23.3.0.1}{3} }^{2}{,}\,{\href{/padicField/23.1.0.1}{1} }$ | ${\href{/padicField/29.3.0.1}{3} }^{2}{,}\,{\href{/padicField/29.1.0.1}{1} }$ | R | ${\href{/padicField/37.3.0.1}{3} }^{2}{,}\,{\href{/padicField/37.1.0.1}{1} }$ | ${\href{/padicField/41.7.0.1}{7} }$ | ${\href{/padicField/43.7.0.1}{7} }$ | ${\href{/padicField/47.3.0.1}{3} }^{2}{,}\,{\href{/padicField/47.1.0.1}{1} }$ | ${\href{/padicField/53.3.0.1}{3} }^{2}{,}\,{\href{/padicField/53.1.0.1}{1} }$ | ${\href{/padicField/59.3.0.1}{3} }^{2}{,}\,{\href{/padicField/59.1.0.1}{1} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
$p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
---|---|---|---|---|---|---|---|
\(2\)
| 2.7.6.1 | $x^{7} + 2$ | $7$ | $1$ | $6$ | $C_7:C_3$ | $[\ ]_{7}^{3}$ |
\(3\)
| $\Q_{3}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
3.3.4.3 | $x^{3} + 6 x^{2} + 12$ | $3$ | $1$ | $4$ | $C_3$ | $[2]$ | |
3.3.4.3 | $x^{3} + 6 x^{2} + 12$ | $3$ | $1$ | $4$ | $C_3$ | $[2]$ | |
\(31\)
| $\Q_{31}$ | $x + 28$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
31.3.2.2 | $x^{3} + 93$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
31.3.2.2 | $x^{3} + 93$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ |
Artin representations
Label | Dimension | Conductor | Artin stem field | $G$ | Ind | $\chi(c)$ | |
---|---|---|---|---|---|---|---|
* | 1.1.1t1.a.a | $1$ | $1$ | \(\Q\) | $C_1$ | $1$ | $1$ |
1.279.3t1.b.a | $1$ | $ 3^{2} \cdot 31 $ | 3.3.77841.1 | $C_3$ (as 3T1) | $0$ | $1$ | |
1.279.3t1.b.b | $1$ | $ 3^{2} \cdot 31 $ | 3.3.77841.1 | $C_3$ (as 3T1) | $0$ | $1$ | |
* | 3.622728.7t3.a.a | $3$ | $ 2^{3} \cdot 3^{4} \cdot 31^{2}$ | 7.7.387790161984.1 | $C_7:C_3$ (as 7T3) | $0$ | $3$ |
* | 3.622728.7t3.a.b | $3$ | $ 2^{3} \cdot 3^{4} \cdot 31^{2}$ | 7.7.387790161984.1 | $C_7:C_3$ (as 7T3) | $0$ | $3$ |