Normalized defining polynomial
\( x^{7} - 3x^{6} - 54x^{5} + 27x^{4} + 809x^{3} + 1563x^{2} + 740x - 171 \)
Invariants
Degree: | $7$ | sage: K.degree()
gp: poldegree(K.pol)
magma: Degree(K);
oscar: degree(K)
| |
Signature: | $[7, 0]$ | sage: K.signature()
gp: K.sign
magma: Signature(K);
oscar: signature(K)
| |
Discriminant: |
\(35271352782961\)
\(\medspace = 2437^{4}\)
| sage: K.disc()
gp: K.disc
magma: OK := Integers(K); Discriminant(OK);
oscar: OK = ring_of_integers(K); discriminant(OK)
| |
Root discriminant: | \(86.17\) | sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
magma: Abs(Discriminant(OK))^(1/Degree(K));
oscar: (1.0 * dK)^(1/degree(K))
| |
Galois root discriminant: | $2437^{2/3}\approx 181.09384346420086$ | ||
Ramified primes: |
\(2437\)
| sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
magma: PrimeDivisors(Discriminant(OK));
oscar: prime_divisors(discriminant((OK)))
| |
Discriminant root field: | \(\Q\) | ||
$\card{ \Aut(K/\Q) }$: | $1$ | sage: K.automorphisms()
magma: Automorphisms(K);
oscar: automorphisms(K)
| |
This field is not Galois over $\Q$. | |||
This is not a CM field. |
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{2}a^{4}-\frac{1}{2}a^{2}-\frac{1}{2}a-\frac{1}{2}$, $\frac{1}{76}a^{5}+\frac{13}{76}a^{4}+\frac{23}{76}a^{3}-\frac{4}{19}a^{2}-\frac{7}{19}a+\frac{1}{4}$, $\frac{1}{152}a^{6}+\frac{3}{76}a^{4}+\frac{65}{152}a^{3}-\frac{6}{19}a^{2}+\frac{3}{152}a-\frac{1}{8}$
Monogenic: | Not computed | |
Index: | $1$ | |
Inessential primes: | None |
Class group and class number
Trivial group, which has order $1$
Unit group
Rank: | $6$ | sage: UK.rank()
gp: K.fu
magma: UnitRank(K);
oscar: rank(UK)
| |
Torsion generator: |
\( -1 \)
(order $2$)
| sage: UK.torsion_generator()
gp: K.tu[2]
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
oscar: torsion_units_generator(OK)
| |
Fundamental units: |
$\frac{1}{76}a^{6}-\frac{1}{19}a^{5}-\frac{23}{38}a^{4}+\frac{49}{76}a^{3}+\frac{156}{19}a^{2}+\frac{1407}{76}a+\frac{55}{4}$, $\frac{3}{38}a^{6}-\frac{25}{76}a^{5}-\frac{289}{76}a^{4}+\frac{499}{76}a^{3}+\frac{1016}{19}a^{2}+\frac{2221}{38}a+\frac{17}{4}$, $\frac{1}{19}a^{6}-\frac{1}{4}a^{5}-\frac{185}{76}a^{4}+\frac{431}{76}a^{3}+\frac{1253}{38}a^{2}+\frac{1051}{38}a-\frac{17}{4}$, $\frac{79}{152}a^{6}-\frac{89}{38}a^{5}-\frac{1849}{76}a^{4}+\frac{7739}{152}a^{3}+\frac{6375}{19}a^{2}+\frac{42581}{152}a-\frac{451}{8}$, $\frac{51}{152}a^{6}-\frac{61}{38}a^{5}-\frac{1167}{76}a^{4}+\frac{5455}{152}a^{3}+\frac{8059}{38}a^{2}+\frac{26669}{152}a-\frac{283}{8}$, $\frac{15}{19}a^{6}-\frac{119}{38}a^{5}-\frac{1481}{38}a^{4}+\frac{2215}{38}a^{3}+\frac{10492}{19}a^{2}+\frac{12997}{19}a+\frac{269}{2}$
| sage: UK.fundamental_units()
gp: K.fu
magma: [K|fUK(g): g in Generators(UK)];
oscar: [K(fUK(a)) for a in gens(UK)]
| |
Regulator: | \( 135074.477609 \) | sage: K.regulator()
gp: K.reg
magma: Regulator(K);
oscar: regulator(K)
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{7}\cdot(2\pi)^{0}\cdot 135074.477609 \cdot 1}{2\cdot\sqrt{35271352782961}}\cr\approx \mathstrut & 1.45560055407 \end{aligned}\]
Galois group
A solvable group of order 21 |
The 5 conjugacy class representatives for $C_7:C_3$ |
Character table for $C_7:C_3$ |
Intermediate fields
The extension is primitive: there are no intermediate fields between this field and $\Q$. |
Sibling fields
Galois closure: | deg 21 |
Minimal sibling: | This field is its own minimal sibling |
Frobenius cycle types
$p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycle type | ${\href{/padicField/2.3.0.1}{3} }^{2}{,}\,{\href{/padicField/2.1.0.1}{1} }$ | ${\href{/padicField/3.3.0.1}{3} }^{2}{,}\,{\href{/padicField/3.1.0.1}{1} }$ | ${\href{/padicField/5.3.0.1}{3} }^{2}{,}\,{\href{/padicField/5.1.0.1}{1} }$ | ${\href{/padicField/7.3.0.1}{3} }^{2}{,}\,{\href{/padicField/7.1.0.1}{1} }$ | ${\href{/padicField/11.7.0.1}{7} }$ | ${\href{/padicField/13.3.0.1}{3} }^{2}{,}\,{\href{/padicField/13.1.0.1}{1} }$ | ${\href{/padicField/17.7.0.1}{7} }$ | ${\href{/padicField/19.1.0.1}{1} }^{7}$ | ${\href{/padicField/23.3.0.1}{3} }^{2}{,}\,{\href{/padicField/23.1.0.1}{1} }$ | ${\href{/padicField/29.3.0.1}{3} }^{2}{,}\,{\href{/padicField/29.1.0.1}{1} }$ | ${\href{/padicField/31.3.0.1}{3} }^{2}{,}\,{\href{/padicField/31.1.0.1}{1} }$ | ${\href{/padicField/37.3.0.1}{3} }^{2}{,}\,{\href{/padicField/37.1.0.1}{1} }$ | ${\href{/padicField/41.7.0.1}{7} }$ | ${\href{/padicField/43.3.0.1}{3} }^{2}{,}\,{\href{/padicField/43.1.0.1}{1} }$ | ${\href{/padicField/47.7.0.1}{7} }$ | ${\href{/padicField/53.3.0.1}{3} }^{2}{,}\,{\href{/padicField/53.1.0.1}{1} }$ | ${\href{/padicField/59.7.0.1}{7} }$ |
Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
$p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
---|---|---|---|---|---|---|---|
\(2437\)
| $\Q_{2437}$ | $x$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
Deg $3$ | $3$ | $1$ | $2$ | ||||
Deg $3$ | $3$ | $1$ | $2$ |