Normalized defining polynomial
\( x^{7} - 203x^{5} - 406x^{4} + 9338x^{3} + 49126x^{2} + 70035x + 4408 \)
Invariants
Degree: | $7$ | sage: K.degree()
gp: poldegree(K.pol)
magma: Degree(K);
oscar: degree(K)
| |
Signature: | $[7, 0]$ | sage: K.signature()
gp: K.sign
magma: Signature(K);
oscar: signature(K)
| |
Discriminant: |
\(3429038075724121\)
\(\medspace = 7^{8}\cdot 29^{6}\)
| sage: K.disc()
gp: K.disc
magma: OK := Integers(K); Discriminant(OK);
oscar: OK = ring_of_integers(K); discriminant(OK)
| |
Root discriminant: | \(165.70\) | sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
magma: Abs(Discriminant(OK))^(1/Degree(K));
oscar: (1.0 * dK)^(1/degree(K))
| |
Galois root discriminant: | $7^{26/21}29^{6/7}\approx 199.4324650301191$ | ||
Ramified primes: |
\(7\), \(29\)
| sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
magma: PrimeDivisors(Discriminant(OK));
oscar: prime_divisors(discriminant((OK)))
| |
Discriminant root field: | \(\Q\) | ||
$\card{ \Aut(K/\Q) }$: | $1$ | sage: K.automorphisms()
magma: Automorphisms(K);
oscar: automorphisms(K)
| |
This field is not Galois over $\Q$. | |||
This is not a CM field. |
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{2}a^{4}-\frac{1}{2}a^{3}-\frac{1}{2}a$, $\frac{1}{2}a^{5}-\frac{1}{2}a^{3}-\frac{1}{2}a^{2}-\frac{1}{2}a$, $\frac{1}{22342}a^{6}-\frac{2469}{22342}a^{5}-\frac{1804}{11171}a^{4}+\frac{4459}{22342}a^{3}+\frac{1751}{11171}a^{2}+\frac{2179}{11171}a+\frac{390}{11171}$
Monogenic: | Not computed | |
Index: | $1$ | |
Inessential primes: | None |
Class group and class number
$C_{7}$, which has order $7$
Unit group
Rank: | $6$ | sage: UK.rank()
gp: K.fu
magma: UnitRank(K);
oscar: rank(UK)
| |
Torsion generator: |
\( -1 \)
(order $2$)
| sage: UK.torsion_generator()
gp: K.tu[2]
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
oscar: torsion_units_generator(OK)
| |
Fundamental units: |
$\frac{2379}{22342}a^{6}-\frac{4488}{11171}a^{5}-\frac{225472}{11171}a^{4}+\frac{360813}{11171}a^{3}+\frac{19692165}{22342}a^{2}+\frac{44249325}{22342}a+\frac{1430505}{11171}$, $\frac{8401}{11171}a^{6}-\frac{31035}{11171}a^{5}-\frac{1590167}{11171}a^{4}+\frac{2461316}{11171}a^{3}+\frac{69244917}{11171}a^{2}+\frac{157090793}{11171}a+\frac{12886737}{11171}$, $\frac{879}{22342}a^{6}-\frac{3077}{22342}a^{5}-\frac{166433}{22342}a^{4}+\frac{122101}{11171}a^{3}+\frac{3594593}{11171}a^{2}+\frac{16286347}{22342}a+\frac{510375}{11171}$, $\frac{10059}{22342}a^{6}-\frac{36051}{22342}a^{5}-\frac{954267}{11171}a^{4}+\frac{2783095}{22342}a^{3}+\frac{41731498}{11171}a^{2}+\frac{95803555}{11171}a+\frac{7106745}{11171}$, $\frac{1139}{11171}a^{6}-\frac{5369}{22342}a^{5}-\frac{410495}{22342}a^{4}+\frac{163561}{11171}a^{3}+\frac{16188241}{22342}a^{2}+\frac{19128590}{11171}a+\frac{1949665}{11171}$, $\frac{37721}{11171}a^{6}-\frac{280319}{22342}a^{5}-\frac{14267517}{22342}a^{4}+\frac{11211876}{11171}a^{3}+\frac{620541613}{22342}a^{2}+\frac{697725171}{11171}a+\frac{44670795}{11171}$
| sage: UK.fundamental_units()
gp: K.fu
magma: [K|fUK(g): g in Generators(UK)];
oscar: [K(fUK(a)) for a in gens(UK)]
| |
Regulator: | \( 165602.32598 \) | sage: K.regulator()
gp: K.reg
magma: Regulator(K);
oscar: regulator(K)
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{7}\cdot(2\pi)^{0}\cdot 165602.32598 \cdot 7}{2\cdot\sqrt{3429038075724121}}\cr\approx \mathstrut & 1.2669465483 \end{aligned}\]
Galois group
A solvable group of order 21 |
The 5 conjugacy class representatives for $C_7:C_3$ |
Character table for $C_7:C_3$ |
Intermediate fields
The extension is primitive: there are no intermediate fields between this field and $\Q$. |
Sibling fields
Galois closure: | deg 21 |
Minimal sibling: | This field is its own minimal sibling |
Frobenius cycle types
$p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycle type | ${\href{/padicField/2.3.0.1}{3} }^{2}{,}\,{\href{/padicField/2.1.0.1}{1} }$ | ${\href{/padicField/3.3.0.1}{3} }^{2}{,}\,{\href{/padicField/3.1.0.1}{1} }$ | ${\href{/padicField/5.3.0.1}{3} }^{2}{,}\,{\href{/padicField/5.1.0.1}{1} }$ | R | ${\href{/padicField/11.3.0.1}{3} }^{2}{,}\,{\href{/padicField/11.1.0.1}{1} }$ | ${\href{/padicField/13.7.0.1}{7} }$ | ${\href{/padicField/17.3.0.1}{3} }^{2}{,}\,{\href{/padicField/17.1.0.1}{1} }$ | ${\href{/padicField/19.3.0.1}{3} }^{2}{,}\,{\href{/padicField/19.1.0.1}{1} }$ | ${\href{/padicField/23.3.0.1}{3} }^{2}{,}\,{\href{/padicField/23.1.0.1}{1} }$ | R | ${\href{/padicField/31.3.0.1}{3} }^{2}{,}\,{\href{/padicField/31.1.0.1}{1} }$ | ${\href{/padicField/37.3.0.1}{3} }^{2}{,}\,{\href{/padicField/37.1.0.1}{1} }$ | ${\href{/padicField/41.7.0.1}{7} }$ | ${\href{/padicField/43.7.0.1}{7} }$ | ${\href{/padicField/47.3.0.1}{3} }^{2}{,}\,{\href{/padicField/47.1.0.1}{1} }$ | ${\href{/padicField/53.3.0.1}{3} }^{2}{,}\,{\href{/padicField/53.1.0.1}{1} }$ | ${\href{/padicField/59.3.0.1}{3} }^{2}{,}\,{\href{/padicField/59.1.0.1}{1} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
$p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
---|---|---|---|---|---|---|---|
\(7\)
| 7.7.8.3 | $x^{7} + 28 x^{2} + 7$ | $7$ | $1$ | $8$ | $C_7:C_3$ | $[4/3]_{3}$ |
\(29\)
| 29.7.6.3 | $x^{7} + 87$ | $7$ | $1$ | $6$ | $C_7$ | $[\ ]_{7}$ |