Normalized defining polynomial
\( x^{7} - 154x^{5} + 6776x^{3} - 74536x - 77198 \)
Invariants
Degree: | $7$ | sage: K.degree()
gp: poldegree(K.pol)
magma: Degree(K);
oscar: degree(K)
| |
Signature: | $[7, 0]$ | sage: K.signature()
gp: K.sign
magma: Signature(K);
oscar: signature(K)
| |
Discriminant: |
\(32027016613996096\)
\(\medspace = 2^{6}\cdot 7^{10}\cdot 11^{6}\)
| sage: K.disc()
gp: K.disc
magma: OK := Integers(K); Discriminant(OK);
oscar: OK = ring_of_integers(K); discriminant(OK)
| |
Root discriminant: | \(228.00\) | sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
magma: Abs(Discriminant(OK))^(1/Degree(K));
oscar: (1.0 * dK)^(1/degree(K))
| |
Galois root discriminant: | $2^{6/7}7^{32/21}11^{6/7}\approx 274.42043856096353$ | ||
Ramified primes: |
\(2\), \(7\), \(11\)
| sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
magma: PrimeDivisors(Discriminant(OK));
oscar: prime_divisors(discriminant((OK)))
| |
Discriminant root field: | \(\Q\) | ||
$\card{ \Aut(K/\Q) }$: | $1$ | sage: K.automorphisms()
magma: Automorphisms(K);
oscar: automorphisms(K)
| |
This field is not Galois over $\Q$. | |||
This is not a CM field. |
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $\frac{1}{11}a^{3}$, $\frac{1}{99}a^{4}+\frac{2}{99}a^{3}+\frac{1}{9}a^{2}-\frac{1}{3}a-\frac{2}{9}$, $\frac{1}{1089}a^{5}-\frac{1}{99}a^{3}+\frac{2}{9}a^{2}+\frac{2}{9}a+\frac{2}{9}$, $\frac{1}{1089}a^{6}-\frac{1}{33}a^{3}+\frac{1}{3}a^{2}-\frac{1}{9}a-\frac{2}{9}$
Monogenic: | Not computed | |
Index: | $1$ | |
Inessential primes: | None |
Class group and class number
Trivial group, which has order $1$
Unit group
Rank: | $6$ | sage: UK.rank()
gp: K.fu
magma: UnitRank(K);
oscar: rank(UK)
| |
Torsion generator: |
\( -1 \)
(order $2$)
| sage: UK.torsion_generator()
gp: K.tu[2]
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
oscar: torsion_units_generator(OK)
| |
Fundamental units: |
$\frac{2}{1089}a^{6}-\frac{8}{1089}a^{5}-\frac{2}{11}a^{4}+\frac{74}{99}a^{3}+\frac{35}{9}a^{2}-10a-\frac{299}{9}$, $\frac{1}{1089}a^{6}-\frac{2}{121}a^{5}-\frac{16}{99}a^{4}+\frac{226}{99}a^{3}+\frac{77}{9}a^{2}-\frac{682}{9}a-\frac{311}{3}$, $\frac{10}{1089}a^{6}+\frac{73}{1089}a^{5}-\frac{116}{99}a^{4}-\frac{839}{99}a^{3}+\frac{68}{3}a^{2}+\frac{1402}{9}a+\frac{1267}{9}$, $\frac{25}{1089}a^{6}+\frac{91}{1089}a^{5}-\frac{236}{99}a^{4}-\frac{305}{99}a^{3}+\frac{214}{3}a^{2}-\frac{611}{9}a-\frac{1619}{9}$, $\frac{59}{363}a^{6}+\frac{388}{363}a^{5}-\frac{1790}{99}a^{4}-\frac{11764}{99}a^{3}+\frac{2950}{9}a^{2}+\frac{6470}{3}a+\frac{17389}{9}$, $\frac{191}{1089}a^{6}+\frac{2029}{1089}a^{5}-\frac{1120}{99}a^{4}-\frac{1625}{11}a^{3}+\frac{163}{9}a^{2}+2492a+\frac{13687}{3}$
| sage: UK.fundamental_units()
gp: K.fu
magma: [K|fUK(g): g in Generators(UK)];
oscar: [K(fUK(a)) for a in gens(UK)]
| |
Regulator: | \( 3741007.61656 \) | sage: K.regulator()
gp: K.reg
magma: Regulator(K);
oscar: regulator(K)
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{7}\cdot(2\pi)^{0}\cdot 3741007.61656 \cdot 1}{2\cdot\sqrt{32027016613996096}}\cr\approx \mathstrut & 1.33785893621 \end{aligned}\]
Galois group
A solvable group of order 21 |
The 5 conjugacy class representatives for $C_7:C_3$ |
Character table for $C_7:C_3$ |
Intermediate fields
The extension is primitive: there are no intermediate fields between this field and $\Q$. |
Sibling fields
Galois closure: | deg 21 |
Minimal sibling: | This field is its own minimal sibling |
Frobenius cycle types
$p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycle type | R | ${\href{/padicField/3.3.0.1}{3} }^{2}{,}\,{\href{/padicField/3.1.0.1}{1} }$ | ${\href{/padicField/5.3.0.1}{3} }^{2}{,}\,{\href{/padicField/5.1.0.1}{1} }$ | R | R | ${\href{/padicField/13.7.0.1}{7} }$ | ${\href{/padicField/17.3.0.1}{3} }^{2}{,}\,{\href{/padicField/17.1.0.1}{1} }$ | ${\href{/padicField/19.3.0.1}{3} }^{2}{,}\,{\href{/padicField/19.1.0.1}{1} }$ | ${\href{/padicField/23.3.0.1}{3} }^{2}{,}\,{\href{/padicField/23.1.0.1}{1} }$ | ${\href{/padicField/29.1.0.1}{1} }^{7}$ | ${\href{/padicField/31.3.0.1}{3} }^{2}{,}\,{\href{/padicField/31.1.0.1}{1} }$ | ${\href{/padicField/37.3.0.1}{3} }^{2}{,}\,{\href{/padicField/37.1.0.1}{1} }$ | ${\href{/padicField/41.7.0.1}{7} }$ | ${\href{/padicField/43.1.0.1}{1} }^{7}$ | ${\href{/padicField/47.3.0.1}{3} }^{2}{,}\,{\href{/padicField/47.1.0.1}{1} }$ | ${\href{/padicField/53.3.0.1}{3} }^{2}{,}\,{\href{/padicField/53.1.0.1}{1} }$ | ${\href{/padicField/59.3.0.1}{3} }^{2}{,}\,{\href{/padicField/59.1.0.1}{1} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
$p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
---|---|---|---|---|---|---|---|
\(2\)
| 2.7.6.1 | $x^{7} + 2$ | $7$ | $1$ | $6$ | $C_7:C_3$ | $[\ ]_{7}^{3}$ |
\(7\)
| 7.7.10.3 | $x^{7} + 14 x^{4} + 7$ | $7$ | $1$ | $10$ | $C_7:C_3$ | $[5/3]_{3}$ |
\(11\)
| 11.7.6.1 | $x^{7} + 11$ | $7$ | $1$ | $6$ | $C_7:C_3$ | $[\ ]_{7}^{3}$ |