Normalized defining polynomial
\( x^{7} - x^{6} - 45x^{5} - 37x^{4} + 267x^{3} + 59x^{2} - 287x - 80 \)
Invariants
Degree: | $7$ | sage: K.degree()
gp: poldegree(K.pol)
magma: Degree(K);
oscar: degree(K)
| |
Signature: | $[7, 0]$ | sage: K.signature()
gp: K.sign
magma: Signature(K);
oscar: signature(K)
| |
Discriminant: |
\(316838611601521\)
\(\medspace = 4219^{4}\)
| sage: K.disc()
gp: K.disc
magma: OK := Integers(K); Discriminant(OK);
oscar: OK = ring_of_integers(K); discriminant(OK)
| |
Root discriminant: | \(117.91\) | sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
magma: Abs(Discriminant(OK))^(1/Degree(K));
oscar: (1.0 * dK)^(1/degree(K))
| |
Galois root discriminant: | $4219^{2/3}\approx 261.09968643070096$ | ||
Ramified primes: |
\(4219\)
| sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
magma: PrimeDivisors(Discriminant(OK));
oscar: prime_divisors(discriminant((OK)))
| |
Discriminant root field: | \(\Q\) | ||
$\card{ \Aut(K/\Q) }$: | $1$ | sage: K.automorphisms()
magma: Automorphisms(K);
oscar: automorphisms(K)
| |
This field is not Galois over $\Q$. | |||
This is not a CM field. |
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{5}a^{4}+\frac{1}{5}a^{3}+\frac{1}{5}a^{2}+\frac{1}{5}a$, $\frac{1}{5}a^{5}-\frac{1}{5}a$, $\frac{1}{125}a^{6}+\frac{6}{125}a^{5}-\frac{3}{125}a^{4}-\frac{58}{125}a^{3}-\frac{14}{125}a^{2}-\frac{39}{125}a-\frac{12}{25}$
Monogenic: | No | |
Index: | $25$ | |
Inessential primes: | $5$ |
Class group and class number
Trivial group, which has order $1$
Unit group
Rank: | $6$ | sage: UK.rank()
gp: K.fu
magma: UnitRank(K);
oscar: rank(UK)
| |
Torsion generator: |
\( -1 \)
(order $2$)
| sage: UK.torsion_generator()
gp: K.tu[2]
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
oscar: torsion_units_generator(OK)
| |
Fundamental units: |
$a^{6}-2a^{5}-43a^{4}+6a^{3}+261a^{2}-202a-83$, $\frac{11}{125}a^{6}-\frac{9}{125}a^{5}-\frac{508}{125}a^{4}-\frac{363}{125}a^{3}+\frac{2746}{125}a^{2}-\frac{1079}{125}a-\frac{107}{25}$, $\frac{117}{125}a^{6}-\frac{673}{125}a^{5}-\frac{2126}{125}a^{4}+\frac{6439}{125}a^{3}+\frac{337}{125}a^{2}-\frac{6088}{125}a+\frac{321}{25}$, $\frac{98}{25}a^{6}-\frac{432}{25}a^{5}-\frac{2894}{25}a^{4}+\frac{6116}{25}a^{3}+\frac{3853}{25}a^{2}-\frac{6927}{25}a-\frac{421}{5}$, $\frac{2}{25}a^{6}-\frac{8}{25}a^{5}-\frac{116}{25}a^{4}-\frac{1}{25}a^{3}+\frac{787}{25}a^{2}-\frac{193}{25}a-\frac{179}{5}$, $\frac{5108}{125}a^{6}-\frac{6602}{125}a^{5}-\frac{227799}{125}a^{4}-\frac{122489}{125}a^{3}+\frac{1394013}{125}a^{2}-\frac{111687}{125}a-\frac{281671}{25}$
| sage: UK.fundamental_units()
gp: K.fu
magma: [K|fUK(g): g in Generators(UK)];
oscar: [K(fUK(a)) for a in gens(UK)]
| |
Regulator: | \( 961298.251359 \) | sage: K.regulator()
gp: K.reg
magma: Regulator(K);
oscar: regulator(K)
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{7}\cdot(2\pi)^{0}\cdot 961298.251359 \cdot 1}{2\cdot\sqrt{316838611601521}}\cr\approx \mathstrut & 3.45636083624 \end{aligned}\]
Galois group
A solvable group of order 21 |
The 5 conjugacy class representatives for $C_7:C_3$ |
Character table for $C_7:C_3$ |
Intermediate fields
The extension is primitive: there are no intermediate fields between this field and $\Q$. |
Sibling fields
Galois closure: | deg 21 |
Minimal sibling: | This field is its own minimal sibling |
Frobenius cycle types
$p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycle type | ${\href{/padicField/2.3.0.1}{3} }^{2}{,}\,{\href{/padicField/2.1.0.1}{1} }$ | ${\href{/padicField/3.3.0.1}{3} }^{2}{,}\,{\href{/padicField/3.1.0.1}{1} }$ | ${\href{/padicField/5.1.0.1}{1} }^{7}$ | ${\href{/padicField/7.3.0.1}{3} }^{2}{,}\,{\href{/padicField/7.1.0.1}{1} }$ | ${\href{/padicField/11.7.0.1}{7} }$ | ${\href{/padicField/13.7.0.1}{7} }$ | ${\href{/padicField/17.3.0.1}{3} }^{2}{,}\,{\href{/padicField/17.1.0.1}{1} }$ | ${\href{/padicField/19.7.0.1}{7} }$ | ${\href{/padicField/23.7.0.1}{7} }$ | ${\href{/padicField/29.3.0.1}{3} }^{2}{,}\,{\href{/padicField/29.1.0.1}{1} }$ | ${\href{/padicField/31.7.0.1}{7} }$ | ${\href{/padicField/37.7.0.1}{7} }$ | ${\href{/padicField/41.3.0.1}{3} }^{2}{,}\,{\href{/padicField/41.1.0.1}{1} }$ | ${\href{/padicField/43.7.0.1}{7} }$ | ${\href{/padicField/47.3.0.1}{3} }^{2}{,}\,{\href{/padicField/47.1.0.1}{1} }$ | ${\href{/padicField/53.3.0.1}{3} }^{2}{,}\,{\href{/padicField/53.1.0.1}{1} }$ | ${\href{/padicField/59.7.0.1}{7} }$ |
Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
$p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
---|---|---|---|---|---|---|---|
\(4219\)
| $\Q_{4219}$ | $x$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
Deg $3$ | $3$ | $1$ | $2$ | ||||
Deg $3$ | $3$ | $1$ | $2$ |