magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![193369, -107717, -12322, 7822, 201, -162, -1, 1]);
sage: x = polygen(QQ); K.<a> = NumberField(x^7 - x^6 - 162*x^5 + 201*x^4 + 7822*x^3 - 12322*x^2 - 107717*x + 193369)
gp: K = bnfinit(x^7 - x^6 - 162*x^5 + 201*x^4 + 7822*x^3 - 12322*x^2 - 107717*x + 193369, 1)
Normalized defining polynomial
\( x^{7} - x^{6} - 162 x^{5} + 201 x^{4} + 7822 x^{3} - 12322 x^{2} - 107717 x + 193369 \)
magma: DefiningPolynomial(K);
sage: K.defining_polynomial()
gp: K.pol
Invariants
| Degree: | $7$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[7, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(2963706958323721=379^{6}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $162.28$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $379$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(379\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{379}(1,·)$, $\chi_{379}(195,·)$, $\chi_{379}(86,·)$, $\chi_{379}(119,·)$, $\chi_{379}(138,·)$, $\chi_{379}(125,·)$, $\chi_{379}(94,·)$$\rbrace$ | ||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $\frac{1}{11} a^{5} + \frac{1}{11} a^{4} + \frac{4}{11} a^{3} - \frac{1}{11} a^{2} - \frac{5}{11} a$, $\frac{1}{940774879} a^{6} - \frac{3102936}{85524989} a^{5} + \frac{320815113}{940774879} a^{4} - \frac{287829481}{940774879} a^{3} + \frac{124419951}{940774879} a^{2} + \frac{239015727}{940774879} a - \frac{14044702}{85524989}$
magma: IntegralBasis(K);
sage: K.integral_basis()
gp: K.zk
Class group and class number
Trivial group, which has order $1$
magma: ClassGroup(K);
sage: K.class_group().invariants()
gp: K.clgp
Unit group
magma: UK, f := UnitGroup(K);
sage: UK = K.unit_group()
| Rank: | $6$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 269113.064107 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
magma: GaloisGroup(K);
sage: K.galois_group(type='pari')
gp: polgalois(K.pol)
| A cyclic group of order 7 |
| The 7 conjugacy class representatives for $C_7$ |
| Character table for $C_7$ |
Intermediate fields
| The extension is primitive: there are no intermediate fields between this field and $\Q$. |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.7.0.1}{7} }$ | ${\href{/LocalNumberField/3.7.0.1}{7} }$ | ${\href{/LocalNumberField/5.7.0.1}{7} }$ | ${\href{/LocalNumberField/7.7.0.1}{7} }$ | ${\href{/LocalNumberField/11.1.0.1}{1} }^{7}$ | ${\href{/LocalNumberField/13.7.0.1}{7} }$ | ${\href{/LocalNumberField/17.7.0.1}{7} }$ | ${\href{/LocalNumberField/19.7.0.1}{7} }$ | ${\href{/LocalNumberField/23.7.0.1}{7} }$ | ${\href{/LocalNumberField/29.7.0.1}{7} }$ | ${\href{/LocalNumberField/31.7.0.1}{7} }$ | ${\href{/LocalNumberField/37.7.0.1}{7} }$ | ${\href{/LocalNumberField/41.7.0.1}{7} }$ | ${\href{/LocalNumberField/43.7.0.1}{7} }$ | ${\href{/LocalNumberField/47.7.0.1}{7} }$ | ${\href{/LocalNumberField/53.7.0.1}{7} }$ | ${\href{/LocalNumberField/59.7.0.1}{7} }$ |
Cycle lengths which are repeated in a cycle type are indicated by exponents.
magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
magma: idealfactors := Factorization(p*Integers(K)); // get the data
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
gp: idealfactors = idealprimedec(K, p); \\ get the data
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 379 | Data not computed | ||||||
Artin representations
| Label | Dimension | Conductor | Defining polynomial of Artin field | $G$ | Ind | $\chi(c)$ | |
|---|---|---|---|---|---|---|---|
| * | 1.1.1t1.1c1 | $1$ | $1$ | $x$ | $C_1$ | $1$ | $1$ |
| * | 1.379.7t1.1c1 | $1$ | $ 379 $ | $x^{7} - x^{6} - 162 x^{5} + 201 x^{4} + 7822 x^{3} - 12322 x^{2} - 107717 x + 193369$ | $C_7$ (as 7T1) | $0$ | $1$ |
| * | 1.379.7t1.1c2 | $1$ | $ 379 $ | $x^{7} - x^{6} - 162 x^{5} + 201 x^{4} + 7822 x^{3} - 12322 x^{2} - 107717 x + 193369$ | $C_7$ (as 7T1) | $0$ | $1$ |
| * | 1.379.7t1.1c3 | $1$ | $ 379 $ | $x^{7} - x^{6} - 162 x^{5} + 201 x^{4} + 7822 x^{3} - 12322 x^{2} - 107717 x + 193369$ | $C_7$ (as 7T1) | $0$ | $1$ |
| * | 1.379.7t1.1c4 | $1$ | $ 379 $ | $x^{7} - x^{6} - 162 x^{5} + 201 x^{4} + 7822 x^{3} - 12322 x^{2} - 107717 x + 193369$ | $C_7$ (as 7T1) | $0$ | $1$ |
| * | 1.379.7t1.1c5 | $1$ | $ 379 $ | $x^{7} - x^{6} - 162 x^{5} + 201 x^{4} + 7822 x^{3} - 12322 x^{2} - 107717 x + 193369$ | $C_7$ (as 7T1) | $0$ | $1$ |
| * | 1.379.7t1.1c6 | $1$ | $ 379 $ | $x^{7} - x^{6} - 162 x^{5} + 201 x^{4} + 7822 x^{3} - 12322 x^{2} - 107717 x + 193369$ | $C_7$ (as 7T1) | $0$ | $1$ |
Data is given for all irreducible
representations of the Galois group for the Galois closure
of this field. Those marked with * are summands in the
permutation representation coming from this field. Representations
which appear with multiplicity greater than one are indicated
by exponents on the *.