Properties

Label 7.7.2963706958323721.1
Degree $7$
Signature $[7, 0]$
Discriminant $379^{6}$
Root discriminant $162.28$
Ramified prime $379$
Class number $1$
Class group Trivial
Galois group $C_7$ (as 7T1)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![193369, -107717, -12322, 7822, 201, -162, -1, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^7 - x^6 - 162*x^5 + 201*x^4 + 7822*x^3 - 12322*x^2 - 107717*x + 193369)
 
gp: K = bnfinit(x^7 - x^6 - 162*x^5 + 201*x^4 + 7822*x^3 - 12322*x^2 - 107717*x + 193369, 1)
 

Normalized defining polynomial

\( x^{7} - x^{6} - 162 x^{5} + 201 x^{4} + 7822 x^{3} - 12322 x^{2} - 107717 x + 193369 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $7$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[7, 0]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(2963706958323721=379^{6}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $162.28$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $379$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is Galois and abelian over $\Q$.
Conductor:  \(379\)
Dirichlet character group:    $\lbrace$$\chi_{379}(1,·)$, $\chi_{379}(195,·)$, $\chi_{379}(86,·)$, $\chi_{379}(119,·)$, $\chi_{379}(138,·)$, $\chi_{379}(125,·)$, $\chi_{379}(94,·)$$\rbrace$
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $\frac{1}{11} a^{5} + \frac{1}{11} a^{4} + \frac{4}{11} a^{3} - \frac{1}{11} a^{2} - \frac{5}{11} a$, $\frac{1}{940774879} a^{6} - \frac{3102936}{85524989} a^{5} + \frac{320815113}{940774879} a^{4} - \frac{287829481}{940774879} a^{3} + \frac{124419951}{940774879} a^{2} + \frac{239015727}{940774879} a - \frac{14044702}{85524989}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

Trivial group, which has order $1$

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $6$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 269113.064107 \)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$C_7$ (as 7T1):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A cyclic group of order 7
The 7 conjugacy class representatives for $C_7$
Character table for $C_7$

Intermediate fields

The extension is primitive: there are no intermediate fields between this field and $\Q$.

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type ${\href{/LocalNumberField/2.7.0.1}{7} }$ ${\href{/LocalNumberField/3.7.0.1}{7} }$ ${\href{/LocalNumberField/5.7.0.1}{7} }$ ${\href{/LocalNumberField/7.7.0.1}{7} }$ ${\href{/LocalNumberField/11.1.0.1}{1} }^{7}$ ${\href{/LocalNumberField/13.7.0.1}{7} }$ ${\href{/LocalNumberField/17.7.0.1}{7} }$ ${\href{/LocalNumberField/19.7.0.1}{7} }$ ${\href{/LocalNumberField/23.7.0.1}{7} }$ ${\href{/LocalNumberField/29.7.0.1}{7} }$ ${\href{/LocalNumberField/31.7.0.1}{7} }$ ${\href{/LocalNumberField/37.7.0.1}{7} }$ ${\href{/LocalNumberField/41.7.0.1}{7} }$ ${\href{/LocalNumberField/43.7.0.1}{7} }$ ${\href{/LocalNumberField/47.7.0.1}{7} }$ ${\href{/LocalNumberField/53.7.0.1}{7} }$ ${\href{/LocalNumberField/59.7.0.1}{7} }$

Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
379Data not computed

Artin representations

Label Dimension Conductor Defining polynomial of Artin field $G$ Ind $\chi(c)$
* 1.1.1t1.1c1$1$ $1$ $x$ $C_1$ $1$ $1$
* 1.379.7t1.1c1$1$ $ 379 $ $x^{7} - x^{6} - 162 x^{5} + 201 x^{4} + 7822 x^{3} - 12322 x^{2} - 107717 x + 193369$ $C_7$ (as 7T1) $0$ $1$
* 1.379.7t1.1c2$1$ $ 379 $ $x^{7} - x^{6} - 162 x^{5} + 201 x^{4} + 7822 x^{3} - 12322 x^{2} - 107717 x + 193369$ $C_7$ (as 7T1) $0$ $1$
* 1.379.7t1.1c3$1$ $ 379 $ $x^{7} - x^{6} - 162 x^{5} + 201 x^{4} + 7822 x^{3} - 12322 x^{2} - 107717 x + 193369$ $C_7$ (as 7T1) $0$ $1$
* 1.379.7t1.1c4$1$ $ 379 $ $x^{7} - x^{6} - 162 x^{5} + 201 x^{4} + 7822 x^{3} - 12322 x^{2} - 107717 x + 193369$ $C_7$ (as 7T1) $0$ $1$
* 1.379.7t1.1c5$1$ $ 379 $ $x^{7} - x^{6} - 162 x^{5} + 201 x^{4} + 7822 x^{3} - 12322 x^{2} - 107717 x + 193369$ $C_7$ (as 7T1) $0$ $1$
* 1.379.7t1.1c6$1$ $ 379 $ $x^{7} - x^{6} - 162 x^{5} + 201 x^{4} + 7822 x^{3} - 12322 x^{2} - 107717 x + 193369$ $C_7$ (as 7T1) $0$ $1$

Data is given for all irreducible representations of the Galois group for the Galois closure of this field. Those marked with * are summands in the permutation representation coming from this field. Representations which appear with multiplicity greater than one are indicated by exponents on the *.