Normalized defining polynomial
\( x^{7} - x^{6} - 39x^{5} - 17x^{4} + 331x^{3} + 291x^{2} - 441x - 83 \)
Invariants
Degree: | $7$ | sage: K.degree()
gp: poldegree(K.pol)
magma: Degree(K);
oscar: degree(K)
| |
Signature: | $[7, 0]$ | sage: K.signature()
gp: K.sign
magma: Signature(K);
oscar: signature(K)
| |
Discriminant: |
\(270595393646656\)
\(\medspace = 2^{6}\cdot 13^{4}\cdot 23^{6}\)
| sage: K.disc()
gp: K.disc
magma: OK := Integers(K); Discriminant(OK);
oscar: OK = ring_of_integers(K); discriminant(OK)
| |
Root discriminant: | \(115.28\) | sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
magma: Abs(Discriminant(OK))^(1/Degree(K));
oscar: (1.0 * dK)^(1/degree(K))
| |
Galois root discriminant: | $2^{6/7}13^{2/3}23^{6/7}\approx 147.18037330360426$ | ||
Ramified primes: |
\(2\), \(13\), \(23\)
| sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
magma: PrimeDivisors(Discriminant(OK));
oscar: prime_divisors(discriminant((OK)))
| |
Discriminant root field: | \(\Q\) | ||
$\card{ \Aut(K/\Q) }$: | $1$ | sage: K.automorphisms()
magma: Automorphisms(K);
oscar: automorphisms(K)
| |
This field is not Galois over $\Q$. | |||
This is not a CM field. |
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{15289}a^{6}+\frac{4397}{15289}a^{5}-\frac{2618}{15289}a^{4}-\frac{1364}{15289}a^{3}-\frac{5253}{15289}a^{2}-\frac{724}{15289}a-\frac{4481}{15289}$
Monogenic: | Not computed | |
Index: | $1$ | |
Inessential primes: | None |
Class group and class number
Trivial group, which has order $1$
Unit group
Rank: | $6$ | sage: UK.rank()
gp: K.fu
magma: UnitRank(K);
oscar: rank(UK)
| |
Torsion generator: |
\( -1 \)
(order $2$)
| sage: UK.torsion_generator()
gp: K.tu[2]
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
oscar: torsion_units_generator(OK)
| |
Fundamental units: |
$\frac{1265}{15289}a^{6}-\frac{2991}{15289}a^{5}-\frac{39924}{15289}a^{4}+\frac{32775}{15289}a^{3}+\frac{204427}{15289}a^{2}-\frac{166699}{15289}a-\frac{26824}{15289}$, $\frac{29089}{15289}a^{6}-\frac{110464}{15289}a^{5}-\frac{826099}{15289}a^{4}+\frac{1816950}{15289}a^{3}+\frac{4565160}{15289}a^{2}-\frac{4288403}{15289}a-\frac{865268}{15289}$, $\frac{3442}{15289}a^{6}-\frac{1636}{15289}a^{5}-\frac{128247}{15289}a^{4}-\frac{154055}{15289}a^{3}+\frac{908112}{15289}a^{2}+\frac{1727756}{15289}a+\frac{278201}{15289}$, $\frac{1014}{15289}a^{6}-\frac{5830}{15289}a^{5}-\frac{24944}{15289}a^{4}+\frac{115226}{15289}a^{3}+\frac{177498}{15289}a^{2}-\frac{260177}{15289}a+\frac{12388}{15289}$, $\frac{527}{15289}a^{6}+\frac{8580}{15289}a^{5}+\frac{11613}{15289}a^{4}-\frac{107268}{15289}a^{3}-\frac{169201}{15289}a^{2}+\frac{199434}{15289}a+\frac{38886}{15289}$, $\frac{4828}{15289}a^{6}-\frac{7705}{15289}a^{5}-\frac{194458}{15289}a^{4}-\frac{26411}{15289}a^{3}+\frac{1684757}{15289}a^{2}+\frac{1121806}{15289}a-\frac{2400706}{15289}$
| sage: UK.fundamental_units()
gp: K.fu
magma: [K|fUK(g): g in Generators(UK)];
oscar: [K(fUK(a)) for a in gens(UK)]
| |
Regulator: | \( 277525.070002 \) | sage: K.regulator()
gp: K.reg
magma: Regulator(K);
oscar: regulator(K)
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{7}\cdot(2\pi)^{0}\cdot 277525.070002 \cdot 1}{2\cdot\sqrt{270595393646656}}\cr\approx \mathstrut & 1.07974697298 \end{aligned}\]
Galois group
A solvable group of order 21 |
The 5 conjugacy class representatives for $C_7:C_3$ |
Character table for $C_7:C_3$ |
Intermediate fields
The extension is primitive: there are no intermediate fields between this field and $\Q$. |
Sibling fields
Galois closure: | deg 21 |
Minimal sibling: | This field is its own minimal sibling |
Frobenius cycle types
$p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycle type | R | ${\href{/padicField/3.3.0.1}{3} }^{2}{,}\,{\href{/padicField/3.1.0.1}{1} }$ | ${\href{/padicField/5.7.0.1}{7} }$ | ${\href{/padicField/7.3.0.1}{3} }^{2}{,}\,{\href{/padicField/7.1.0.1}{1} }$ | ${\href{/padicField/11.3.0.1}{3} }^{2}{,}\,{\href{/padicField/11.1.0.1}{1} }$ | R | ${\href{/padicField/17.3.0.1}{3} }^{2}{,}\,{\href{/padicField/17.1.0.1}{1} }$ | ${\href{/padicField/19.3.0.1}{3} }^{2}{,}\,{\href{/padicField/19.1.0.1}{1} }$ | R | ${\href{/padicField/29.3.0.1}{3} }^{2}{,}\,{\href{/padicField/29.1.0.1}{1} }$ | ${\href{/padicField/31.7.0.1}{7} }$ | ${\href{/padicField/37.3.0.1}{3} }^{2}{,}\,{\href{/padicField/37.1.0.1}{1} }$ | ${\href{/padicField/41.3.0.1}{3} }^{2}{,}\,{\href{/padicField/41.1.0.1}{1} }$ | ${\href{/padicField/43.3.0.1}{3} }^{2}{,}\,{\href{/padicField/43.1.0.1}{1} }$ | ${\href{/padicField/47.7.0.1}{7} }$ | ${\href{/padicField/53.1.0.1}{1} }^{7}$ | ${\href{/padicField/59.3.0.1}{3} }^{2}{,}\,{\href{/padicField/59.1.0.1}{1} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
$p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
---|---|---|---|---|---|---|---|
\(2\)
| 2.7.6.1 | $x^{7} + 2$ | $7$ | $1$ | $6$ | $C_7:C_3$ | $[\ ]_{7}^{3}$ |
\(13\)
| $\Q_{13}$ | $x + 11$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
13.3.2.2 | $x^{3} + 13$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
13.3.2.2 | $x^{3} + 13$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
\(23\)
| 23.7.6.1 | $x^{7} + 23$ | $7$ | $1$ | $6$ | $C_7:C_3$ | $[\ ]_{7}^{3}$ |
Artin representations
Label | Dimension | Conductor | Artin stem field | $G$ | Ind | $\chi(c)$ | |
---|---|---|---|---|---|---|---|
* | 1.1.1t1.a.a | $1$ | $1$ | \(\Q\) | $C_1$ | $1$ | $1$ |
1.13.3t1.a.a | $1$ | $ 13 $ | 3.3.169.1 | $C_3$ (as 3T1) | $0$ | $1$ | |
1.13.3t1.a.b | $1$ | $ 13 $ | 3.3.169.1 | $C_3$ (as 3T1) | $0$ | $1$ | |
* | 3.16449784.7t3.a.a | $3$ | $ 2^{3} \cdot 13^{2} \cdot 23^{3}$ | 7.7.270595393646656.1 | $C_7:C_3$ (as 7T3) | $0$ | $3$ |
* | 3.16449784.7t3.a.b | $3$ | $ 2^{3} \cdot 13^{2} \cdot 23^{3}$ | 7.7.270595393646656.1 | $C_7:C_3$ (as 7T3) | $0$ | $3$ |