Normalized defining polynomial
\( x^{7} - x^{6} - 41 x^{5} + 39 x^{4} + 496 x^{3} - 434 x^{2} - 1643 x + 961 \)
Invariants
| Degree: | $7$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[7, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(26226371926561=31^{4}\cdot 73^{4}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $82.60$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $31, 73$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{4} a^{4} - \frac{1}{2} a^{3} - \frac{1}{4} a^{2} - \frac{1}{4} a + \frac{1}{4}$, $\frac{1}{4} a^{5} - \frac{1}{4} a^{3} + \frac{1}{4} a^{2} - \frac{1}{4} a - \frac{1}{2}$, $\frac{1}{5084} a^{6} + \frac{309}{5084} a^{5} + \frac{106}{1271} a^{4} + \frac{283}{2542} a^{3} - \frac{23}{164} a^{2} + \frac{18}{41} a + \frac{45}{164}$
Class group and class number
Trivial group, which has order $1$
Unit group
| Rank: | $6$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 88442.985189 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 21 |
| The 5 conjugacy class representatives for $C_7:C_3$ |
| Character table for $C_7:C_3$ |
Intermediate fields
| The extension is primitive: there are no intermediate fields between this field and $\Q$. |
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/2.1.0.1}{1} }$ | ${\href{/LocalNumberField/3.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/3.1.0.1}{1} }$ | ${\href{/LocalNumberField/5.7.0.1}{7} }$ | ${\href{/LocalNumberField/7.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/7.1.0.1}{1} }$ | ${\href{/LocalNumberField/11.7.0.1}{7} }$ | ${\href{/LocalNumberField/13.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }$ | ${\href{/LocalNumberField/17.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }$ | ${\href{/LocalNumberField/19.7.0.1}{7} }$ | ${\href{/LocalNumberField/23.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }$ | ${\href{/LocalNumberField/29.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }$ | R | ${\href{/LocalNumberField/37.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }$ | ${\href{/LocalNumberField/41.1.0.1}{1} }^{7}$ | ${\href{/LocalNumberField/43.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }$ | ${\href{/LocalNumberField/47.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }$ | ${\href{/LocalNumberField/53.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }$ | ${\href{/LocalNumberField/59.7.0.1}{7} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $31$ | $\Q_{31}$ | $x + 7$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| 31.3.2.3 | $x^{3} - 1519$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 31.3.2.3 | $x^{3} - 1519$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| $73$ | $\Q_{73}$ | $x + 5$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| 73.3.2.3 | $x^{3} - 1825$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 73.3.2.3 | $x^{3} - 1825$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ |
Artin representations
| Label | Dimension | Conductor | Defining polynomial of Artin field | $G$ | Ind | $\chi(c)$ | |
|---|---|---|---|---|---|---|---|
| * | 1.1.1t1.1c1 | $1$ | $1$ | $x$ | $C_1$ | $1$ | $1$ |
| 1.31_73.3t1.1c1 | $1$ | $ 31 \cdot 73 $ | $x^{3} - x^{2} - 754 x - 7711$ | $C_3$ (as 3T1) | $0$ | $1$ | |
| 1.31_73.3t1.1c2 | $1$ | $ 31 \cdot 73 $ | $x^{3} - x^{2} - 754 x - 7711$ | $C_3$ (as 3T1) | $0$ | $1$ | |
| * | 3.31e2_73e2.7t3.1c1 | $3$ | $ 31^{2} \cdot 73^{2}$ | $x^{7} - x^{6} - 41 x^{5} + 39 x^{4} + 496 x^{3} - 434 x^{2} - 1643 x + 961$ | $C_7:C_3$ (as 7T3) | $0$ | $3$ |
| * | 3.31e2_73e2.7t3.1c2 | $3$ | $ 31^{2} \cdot 73^{2}$ | $x^{7} - x^{6} - 41 x^{5} + 39 x^{4} + 496 x^{3} - 434 x^{2} - 1643 x + 961$ | $C_7:C_3$ (as 7T3) | $0$ | $3$ |