Normalized defining polynomial
\( x^{7} - x^{6} - 732 x^{5} + 3104 x^{4} + 155808 x^{3} - 1028208 x^{2} - 6517504 x + 42320896 \)
Invariants
| Degree: | $7$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[7, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(24914511498062181241=1709^{6}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $590.09$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $1709$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(1709\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{1709}(880,·)$, $\chi_{1709}(1,·)$, $\chi_{1709}(866,·)$, $\chi_{1709}(1414,·)$, $\chi_{1709}(1575,·)$, $\chi_{1709}(168,·)$, $\chi_{1709}(223,·)$$\rbrace$ | ||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $\frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{8} a^{3} + \frac{1}{8} a^{2} + \frac{1}{4} a$, $\frac{1}{128} a^{4} + \frac{3}{128} a^{3} - \frac{5}{32} a^{2} - \frac{7}{32} a + \frac{1}{4}$, $\frac{1}{512} a^{5} + \frac{1}{512} a^{4} - \frac{13}{256} a^{3} + \frac{3}{128} a^{2} - \frac{21}{64} a - \frac{1}{8}$, $\frac{1}{42131456} a^{6} + \frac{39453}{42131456} a^{5} - \frac{73227}{21065728} a^{4} - \frac{188133}{10532864} a^{3} - \frac{214847}{5266432} a^{2} + \frac{36991}{164576} a - \frac{1061}{2224}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $6$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 1611972567.68 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 7 |
| The 7 conjugacy class representatives for $C_7$ |
| Character table for $C_7$ |
Intermediate fields
| The extension is primitive: there are no intermediate fields between this field and $\Q$. |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.1.0.1}{1} }^{7}$ | ${\href{/LocalNumberField/3.7.0.1}{7} }$ | ${\href{/LocalNumberField/5.7.0.1}{7} }$ | ${\href{/LocalNumberField/7.7.0.1}{7} }$ | ${\href{/LocalNumberField/11.7.0.1}{7} }$ | ${\href{/LocalNumberField/13.7.0.1}{7} }$ | ${\href{/LocalNumberField/17.7.0.1}{7} }$ | ${\href{/LocalNumberField/19.7.0.1}{7} }$ | ${\href{/LocalNumberField/23.7.0.1}{7} }$ | ${\href{/LocalNumberField/29.7.0.1}{7} }$ | ${\href{/LocalNumberField/31.7.0.1}{7} }$ | ${\href{/LocalNumberField/37.1.0.1}{1} }^{7}$ | ${\href{/LocalNumberField/41.7.0.1}{7} }$ | ${\href{/LocalNumberField/43.7.0.1}{7} }$ | ${\href{/LocalNumberField/47.7.0.1}{7} }$ | ${\href{/LocalNumberField/53.7.0.1}{7} }$ | ${\href{/LocalNumberField/59.7.0.1}{7} }$ |
Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 1709 | Data not computed | ||||||