magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![1, -1, -10, 13, 10, -7, -2, 1]);
sage: x = polygen(QQ); K.<a> = NumberField(x^7 - 2*x^6 - 7*x^5 + 10*x^4 + 13*x^3 - 10*x^2 - x + 1)
gp: K = bnfinit(x^7 - 2*x^6 - 7*x^5 + 10*x^4 + 13*x^3 - 10*x^2 - x + 1, 1)
Normalized defining polynomial
\( x^{7} - 2 x^{6} - 7 x^{5} + 10 x^{4} + 13 x^{3} - 10 x^{2} - x + 1 \)
magma: DefiningPolynomial(K);
sage: K.defining_polynomial()
gp: K.pol
Invariants
| Degree: | $7$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[7, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(192100033=577^{3}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $15.25$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $577$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$
magma: IntegralBasis(K);
sage: K.integral_basis()
gp: K.zk
Class group and class number
Trivial group, which has order $1$
magma: ClassGroup(K);
sage: K.class_group().invariants()
gp: K.clgp
Unit group
magma: UK, f := UnitGroup(K);
sage: UK = K.unit_group()
| Rank: | $6$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | \( a^{6} - 2 a^{5} - 7 a^{4} + 10 a^{3} + 13 a^{2} - 10 a - 1 \), \( 5 a^{6} - 8 a^{5} - 38 a^{4} + 34 a^{3} + 78 a^{2} - 16 a - 11 \), \( 4 a^{6} - 6 a^{5} - 31 a^{4} + 25 a^{3} + 64 a^{2} - 10 a - 8 \), \( a^{6} - 2 a^{5} - 7 a^{4} + 9 a^{3} + 14 a^{2} - 5 a - 2 \), \( 4 a^{6} - 6 a^{5} - 31 a^{4} + 25 a^{3} + 64 a^{2} - 10 a - 9 \), \( 9 a^{6} - 14 a^{5} - 69 a^{4} + 59 a^{3} + 142 a^{2} - 26 a - 20 \) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 59.674307501 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
magma: GaloisGroup(K);
sage: K.galois_group(type='pari')
gp: polgalois(K.pol)
| A solvable group of order 14 |
| The 5 conjugacy class representatives for $D_{7}$ |
| Character table for $D_{7}$ |
Intermediate fields
| The extension is primitive: there are no intermediate fields between this field and $\Q$. |
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.7.0.1}{7} }$ | ${\href{/LocalNumberField/3.7.0.1}{7} }$ | ${\href{/LocalNumberField/5.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/5.1.0.1}{1} }$ | ${\href{/LocalNumberField/7.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/7.1.0.1}{1} }$ | ${\href{/LocalNumberField/11.7.0.1}{7} }$ | ${\href{/LocalNumberField/13.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }$ | ${\href{/LocalNumberField/17.7.0.1}{7} }$ | ${\href{/LocalNumberField/19.7.0.1}{7} }$ | ${\href{/LocalNumberField/23.7.0.1}{7} }$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }$ | ${\href{/LocalNumberField/31.7.0.1}{7} }$ | ${\href{/LocalNumberField/37.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }$ | ${\href{/LocalNumberField/53.7.0.1}{7} }$ | ${\href{/LocalNumberField/59.7.0.1}{7} }$ |
Cycle lengths which are repeated in a cycle type are indicated by exponents.
magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
magma: idealfactors := Factorization(p*Integers(K)); // get the data
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
gp: idealfactors = idealprimedec(K, p); \\ get the data
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 577 | Data not computed | ||||||
Artin representations
| Label | Dimension | Conductor | Defining polynomial of Artin field | $G$ | Ind | $\chi(c)$ | |
|---|---|---|---|---|---|---|---|
| * | 1.1.1t1.1c1 | $1$ | $1$ | $x$ | $C_1$ | $1$ | $1$ |
| 1.577.2t1.1c1 | $1$ | $ 577 $ | $x^{2} - x - 144$ | $C_2$ (as 2T1) | $1$ | $1$ | |
| * | 2.577.7t2.1c1 | $2$ | $ 577 $ | $x^{7} - 2 x^{6} - 7 x^{5} + 10 x^{4} + 13 x^{3} - 10 x^{2} - x + 1$ | $D_{7}$ (as 7T2) | $1$ | $2$ |
| * | 2.577.7t2.1c2 | $2$ | $ 577 $ | $x^{7} - 2 x^{6} - 7 x^{5} + 10 x^{4} + 13 x^{3} - 10 x^{2} - x + 1$ | $D_{7}$ (as 7T2) | $1$ | $2$ |
| * | 2.577.7t2.1c3 | $2$ | $ 577 $ | $x^{7} - 2 x^{6} - 7 x^{5} + 10 x^{4} + 13 x^{3} - 10 x^{2} - x + 1$ | $D_{7}$ (as 7T2) | $1$ | $2$ |
Data is given for all irreducible
representations of the Galois group for the Galois closure
of this field. Those marked with * are summands in the
permutation representation coming from this field. Representations
which appear with multiplicity greater than one are indicated
by exponents on the *.