Normalized defining polynomial
\( x^{7} - x^{6} - 47x^{5} + 517x^{3} + 506x^{2} - 376x - 168 \)
Invariants
Degree: | $7$ | sage: K.degree()
gp: poldegree(K.pol)
magma: Degree(K);
oscar: degree(K)
| |
Signature: | $[7, 0]$ | sage: K.signature()
gp: K.sign
magma: Signature(K);
oscar: signature(K)
| |
Discriminant: |
\(15588038452561\)
\(\medspace = 1987^{4}\)
| sage: K.disc()
gp: K.disc
magma: OK := Integers(K); Discriminant(OK);
oscar: OK = ring_of_integers(K); discriminant(OK)
| |
Root discriminant: | \(76.68\) | sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
magma: Abs(Discriminant(OK))^(1/Degree(K));
oscar: (1.0 * dK)^(1/degree(K))
| |
Galois root discriminant: | $1987^{2/3}\approx 158.0514840500404$ | ||
Ramified primes: |
\(1987\)
| sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
magma: PrimeDivisors(Discriminant(OK));
oscar: prime_divisors(discriminant((OK)))
| |
Discriminant root field: | \(\Q\) | ||
$\card{ \Aut(K/\Q) }$: | $1$ | sage: K.automorphisms()
magma: Automorphisms(K);
oscar: automorphisms(K)
| |
This field is not Galois over $\Q$. | |||
This is not a CM field. |
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $\frac{1}{6}a^{5}+\frac{1}{6}a^{4}-\frac{1}{6}a^{3}-\frac{1}{6}a$, $\frac{1}{133092}a^{6}+\frac{23}{44364}a^{5}+\frac{4783}{133092}a^{4}-\frac{32233}{66546}a^{3}+\frac{13025}{133092}a^{2}-\frac{4847}{33273}a-\frac{2218}{11091}$
Monogenic: | Not computed | |
Index: | $1$ | |
Inessential primes: | None |
Class group and class number
Trivial group, which has order $1$
Unit group
Rank: | $6$ | sage: UK.rank()
gp: K.fu
magma: UnitRank(K);
oscar: rank(UK)
| |
Torsion generator: |
\( -1 \)
(order $2$)
| sage: UK.torsion_generator()
gp: K.tu[2]
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
oscar: torsion_units_generator(OK)
| |
Fundamental units: |
$\frac{1823}{66546}a^{6}-\frac{2435}{22182}a^{5}-\frac{64663}{66546}a^{4}+\frac{99178}{33273}a^{3}+\frac{386929}{66546}a^{2}-\frac{170564}{33273}a-\frac{1489}{11091}$, $\frac{87}{7394}a^{6}-\frac{238}{11091}a^{5}-\frac{6157}{11091}a^{4}+\frac{6815}{22182}a^{3}+\frac{46257}{7394}a^{2}+\frac{82259}{22182}a-\frac{22817}{3697}$, $\frac{22373}{133092}a^{6}-\frac{3465}{14788}a^{5}-\frac{1038463}{133092}a^{4}+\frac{99320}{33273}a^{3}+\frac{11382757}{133092}a^{2}+\frac{3571945}{66546}a-\frac{933824}{11091}$, $\frac{9265}{44364}a^{6}-\frac{11387}{44364}a^{5}-\frac{433993}{44364}a^{4}+\frac{18891}{7394}a^{3}+\frac{4797857}{44364}a^{2}+\frac{264953}{3697}a-\frac{386332}{3697}$, $\frac{520}{33273}a^{6}-\frac{653}{7394}a^{5}-\frac{27721}{66546}a^{4}+\frac{177911}{66546}a^{3}-\frac{14692}{33273}a^{2}-\frac{787543}{66546}a-\frac{43948}{11091}$, $\frac{48623}{133092}a^{6}-\frac{9247}{14788}a^{5}-\frac{2321389}{133092}a^{4}+\frac{340301}{33273}a^{3}+\frac{27346699}{133092}a^{2}+\frac{8833483}{66546}a-\frac{2093129}{11091}$
| sage: UK.fundamental_units()
gp: K.fu
magma: [K|fUK(g): g in Generators(UK)];
oscar: [K(fUK(a)) for a in gens(UK)]
| |
Regulator: | \( 82013.4593856 \) | sage: K.regulator()
gp: K.reg
magma: Regulator(K);
oscar: regulator(K)
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{7}\cdot(2\pi)^{0}\cdot 82013.4593856 \cdot 1}{2\cdot\sqrt{15588038452561}}\cr\approx \mathstrut & 1.32944192629 \end{aligned}\]
Galois group
A solvable group of order 21 |
The 5 conjugacy class representatives for $C_7:C_3$ |
Character table for $C_7:C_3$ |
Intermediate fields
The extension is primitive: there are no intermediate fields between this field and $\Q$. |
Sibling fields
Galois closure: | deg 21 |
Minimal sibling: | This field is its own minimal sibling |
Frobenius cycle types
$p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycle type | ${\href{/padicField/2.3.0.1}{3} }^{2}{,}\,{\href{/padicField/2.1.0.1}{1} }$ | ${\href{/padicField/3.3.0.1}{3} }^{2}{,}\,{\href{/padicField/3.1.0.1}{1} }$ | ${\href{/padicField/5.3.0.1}{3} }^{2}{,}\,{\href{/padicField/5.1.0.1}{1} }$ | ${\href{/padicField/7.3.0.1}{3} }^{2}{,}\,{\href{/padicField/7.1.0.1}{1} }$ | ${\href{/padicField/11.3.0.1}{3} }^{2}{,}\,{\href{/padicField/11.1.0.1}{1} }$ | ${\href{/padicField/13.3.0.1}{3} }^{2}{,}\,{\href{/padicField/13.1.0.1}{1} }$ | ${\href{/padicField/17.3.0.1}{3} }^{2}{,}\,{\href{/padicField/17.1.0.1}{1} }$ | ${\href{/padicField/19.3.0.1}{3} }^{2}{,}\,{\href{/padicField/19.1.0.1}{1} }$ | ${\href{/padicField/23.3.0.1}{3} }^{2}{,}\,{\href{/padicField/23.1.0.1}{1} }$ | ${\href{/padicField/29.7.0.1}{7} }$ | ${\href{/padicField/31.3.0.1}{3} }^{2}{,}\,{\href{/padicField/31.1.0.1}{1} }$ | ${\href{/padicField/37.3.0.1}{3} }^{2}{,}\,{\href{/padicField/37.1.0.1}{1} }$ | ${\href{/padicField/41.3.0.1}{3} }^{2}{,}\,{\href{/padicField/41.1.0.1}{1} }$ | ${\href{/padicField/43.3.0.1}{3} }^{2}{,}\,{\href{/padicField/43.1.0.1}{1} }$ | ${\href{/padicField/47.7.0.1}{7} }$ | ${\href{/padicField/53.3.0.1}{3} }^{2}{,}\,{\href{/padicField/53.1.0.1}{1} }$ | ${\href{/padicField/59.3.0.1}{3} }^{2}{,}\,{\href{/padicField/59.1.0.1}{1} }$ |
Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
$p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
---|---|---|---|---|---|---|---|
\(1987\)
| $\Q_{1987}$ | $x$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
Deg $3$ | $3$ | $1$ | $2$ | ||||
Deg $3$ | $3$ | $1$ | $2$ |
Artin representations
Label | Dimension | Conductor | Artin stem field | $G$ | Ind | $\chi(c)$ | |
---|---|---|---|---|---|---|---|
* | 1.1.1t1.a.a | $1$ | $1$ | \(\Q\) | $C_1$ | $1$ | $1$ |
1.1987.3t1.a.a | $1$ | $ 1987 $ | 3.3.3948169.1 | $C_3$ (as 3T1) | $0$ | $1$ | |
1.1987.3t1.a.b | $1$ | $ 1987 $ | 3.3.3948169.1 | $C_3$ (as 3T1) | $0$ | $1$ | |
* | 3.3948169.7t3.a.a | $3$ | $ 1987^{2}$ | 7.7.15588038452561.1 | $C_7:C_3$ (as 7T3) | $0$ | $3$ |
* | 3.3948169.7t3.a.b | $3$ | $ 1987^{2}$ | 7.7.15588038452561.1 | $C_7:C_3$ (as 7T3) | $0$ | $3$ |