Normalized defining polynomial
\( x^{7} - 21x^{5} - 21x^{4} + 91x^{3} + 112x^{2} - 84x - 97 \)
Invariants
Degree: | $7$ | sage: K.degree()
gp: poldegree(K.pol)
magma: Degree(K);
oscar: degree(K)
| |
Signature: | $[7, 0]$ | sage: K.signature()
gp: K.sign
magma: Signature(K);
oscar: signature(K)
| |
Discriminant: |
\(13841287201\)
\(\medspace = 7^{12}\)
| sage: K.disc()
gp: K.disc
magma: OK := Integers(K); Discriminant(OK);
oscar: OK = ring_of_integers(K); discriminant(OK)
| |
Root discriminant: | \(28.10\) | sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
magma: Abs(Discriminant(OK))^(1/Degree(K));
oscar: (1.0 * dK)^(1/degree(K))
| |
Ramified primes: |
\(7\)
| sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
magma: PrimeDivisors(Discriminant(OK));
oscar: prime_divisors(discriminant((OK)))
| |
Discriminant root field: | \(\Q\) | ||
$\card{ \Gal(K/\Q) }$: | $7$ | sage: K.automorphisms()
magma: Automorphisms(K);
oscar: automorphisms(K)
| |
This field is Galois and abelian over $\Q$. | |||
Conductor: | \(49=7^{2}\) | ||
Dirichlet character group: | $\lbrace$$\chi_{49}(1,·)$, $\chi_{49}(36,·)$, $\chi_{49}(22,·)$, $\chi_{49}(8,·)$, $\chi_{49}(43,·)$, $\chi_{49}(29,·)$, $\chi_{49}(15,·)$$\rbrace$ | ||
This is not a CM field. |
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{589}a^{6}+\frac{239}{589}a^{5}-\frac{33}{589}a^{4}-\frac{251}{589}a^{3}+\frac{180}{589}a^{2}+\frac{135}{589}a-\frac{214}{589}$
Monogenic: | No | |
Index: | $1$ | |
Inessential primes: | None |
Class group and class number
Trivial group, which has order $1$
Unit group
Rank: | $6$ | sage: UK.rank()
gp: K.fu
magma: UnitRank(K);
oscar: rank(UK)
| |
Torsion generator: |
\( -1 \)
(order $2$)
| sage: UK.torsion_generator()
gp: K.tu[2]
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
oscar: torsion_units_generator(OK)
| |
Fundamental units: |
$\frac{125}{589}a^{6}-\frac{164}{589}a^{5}-\frac{2358}{589}a^{4}+\frac{431}{589}a^{3}+\frac{10131}{589}a^{2}+\frac{972}{589}a-\frac{10258}{589}$, $\frac{315}{589}a^{6}-\frac{696}{589}a^{5}-\frac{5094}{589}a^{4}+\frac{4573}{589}a^{3}+\frac{19004}{589}a^{2}-\frac{5773}{589}a-\frac{14400}{589}$, $\frac{110}{589}a^{6}-\frac{215}{589}a^{5}-\frac{1863}{589}a^{4}+\frac{1251}{589}a^{3}+\frac{7431}{589}a^{2}-\frac{1642}{589}a-\frac{5870}{589}$, $\frac{10}{589}a^{6}+\frac{34}{589}a^{5}-\frac{330}{589}a^{4}-\frac{743}{589}a^{3}+\frac{2389}{589}a^{2}+\frac{3117}{589}a-\frac{5085}{589}$, $\frac{320}{589}a^{6}-\frac{679}{589}a^{5}-\frac{5259}{589}a^{4}+\frac{4496}{589}a^{3}+\frac{19315}{589}a^{2}-\frac{6276}{589}a-\frac{14881}{589}$, $\frac{379}{589}a^{6}-\frac{714}{589}a^{5}-\frac{6617}{589}a^{4}+\frac{4412}{589}a^{3}+\frac{26401}{589}a^{2}-\frac{5968}{589}a-\frac{20439}{589}$
| sage: UK.fundamental_units()
gp: K.fu
magma: [K|fUK(g): g in Generators(UK)];
oscar: [K(fUK(a)) for a in gens(UK)]
| |
Regulator: | \( 550.88577714 \) | sage: K.regulator()
gp: K.reg
magma: Regulator(K);
oscar: regulator(K)
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{7}\cdot(2\pi)^{0}\cdot 550.88577714 \cdot 1}{2\cdot\sqrt{13841287201}}\cr\approx \mathstrut & 0.29967691809 \end{aligned}\]
Galois group
A cyclic group of order 7 |
The 7 conjugacy class representatives for $C_7$ |
Character table for $C_7$ |
Intermediate fields
The extension is primitive: there are no intermediate fields between this field and $\Q$. |
Frobenius cycle types
$p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycle type | ${\href{/padicField/2.7.0.1}{7} }$ | ${\href{/padicField/3.7.0.1}{7} }$ | ${\href{/padicField/5.7.0.1}{7} }$ | R | ${\href{/padicField/11.7.0.1}{7} }$ | ${\href{/padicField/13.7.0.1}{7} }$ | ${\href{/padicField/17.7.0.1}{7} }$ | ${\href{/padicField/19.1.0.1}{1} }^{7}$ | ${\href{/padicField/23.7.0.1}{7} }$ | ${\href{/padicField/29.7.0.1}{7} }$ | ${\href{/padicField/31.1.0.1}{1} }^{7}$ | ${\href{/padicField/37.7.0.1}{7} }$ | ${\href{/padicField/41.7.0.1}{7} }$ | ${\href{/padicField/43.7.0.1}{7} }$ | ${\href{/padicField/47.7.0.1}{7} }$ | ${\href{/padicField/53.7.0.1}{7} }$ | ${\href{/padicField/59.7.0.1}{7} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
$p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
---|---|---|---|---|---|---|---|
\(7\)
| 7.7.12.1 | $x^{7} + 42 x^{6} + 7$ | $7$ | $1$ | $12$ | $C_7$ | $[2]$ |
Artin representations
Label | Dimension | Conductor | Artin stem field | $G$ | Ind | $\chi(c)$ | |
---|---|---|---|---|---|---|---|
* | 1.1.1t1.a.a | $1$ | $1$ | \(\Q\) | $C_1$ | $1$ | $1$ |
* | 1.49.7t1.a.a | $1$ | $ 7^{2}$ | 7.7.13841287201.1 | $C_7$ (as 7T1) | $0$ | $1$ |
* | 1.49.7t1.a.b | $1$ | $ 7^{2}$ | 7.7.13841287201.1 | $C_7$ (as 7T1) | $0$ | $1$ |
* | 1.49.7t1.a.c | $1$ | $ 7^{2}$ | 7.7.13841287201.1 | $C_7$ (as 7T1) | $0$ | $1$ |
* | 1.49.7t1.a.d | $1$ | $ 7^{2}$ | 7.7.13841287201.1 | $C_7$ (as 7T1) | $0$ | $1$ |
* | 1.49.7t1.a.e | $1$ | $ 7^{2}$ | 7.7.13841287201.1 | $C_7$ (as 7T1) | $0$ | $1$ |
* | 1.49.7t1.a.f | $1$ | $ 7^{2}$ | 7.7.13841287201.1 | $C_7$ (as 7T1) | $0$ | $1$ |