Normalized defining polynomial
\( x^{7} - x^{6} - 12x^{5} + 9x^{4} + 37x^{3} - 26x^{2} - 21x + 5 \)
Invariants
| Degree: | $7$ |
| |
| Signature: | $[7, 0]$ |
| |
| Discriminant: |
\(12431698517\)
\(\medspace = 7^{4}\cdot 173^{3}\)
|
| |
| Root discriminant: | \(27.67\) |
| |
| Galois root discriminant: | $7^{2/3}173^{1/2}\approx 48.13065200407494$ | ||
| Ramified primes: |
\(7\), \(173\)
|
| |
| Discriminant root field: | \(\Q(\sqrt{173}) \) | ||
| $\Aut(K/\Q)$: | $C_1$ |
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
| This field has no CM subfields. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$
| Monogenic: | Yes | |
| Index: | $1$ | |
| Inessential primes: | None |
Class group and class number
| Ideal class group: | Trivial group, which has order $1$ |
| |
| Narrow class group: | Trivial group, which has order $1$ |
|
Unit group
| Rank: | $6$ |
| |
| Torsion generator: |
\( -1 \)
(order $2$)
|
| |
| Fundamental units: |
$a^{6}-11a^{4}-3a^{3}+25a^{2}+3a-4$, $a^{5}-a^{4}-9a^{3}+4a^{2}+15a-3$, $a^{6}-11a^{4}-2a^{3}+24a^{2}-4a-1$, $a^{6}-a^{5}-10a^{4}+5a^{3}+24a^{2}-8a-12$, $a^{6}-11a^{4}-2a^{3}+25a^{2}-2a-2$, $a^{5}-2a^{4}-7a^{3}+10a^{2}+7a-6$
|
| |
| Regulator: | \( 1458.19633198 \) |
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{7}\cdot(2\pi)^{0}\cdot 1458.19633198 \cdot 1}{2\cdot\sqrt{12431698517}}\cr\approx \mathstrut & 0.837010181263 \end{aligned}\]
Galois group
| A solvable group of order 42 |
| The 7 conjugacy class representatives for $F_7$ |
| Character table for $F_7$ |
Intermediate fields
| The extension is primitive: there are no intermediate fields between this field and $\Q$. |
Sibling fields
| Galois closure: | deg 42 |
| Degree 14 sibling: | 14.14.26736653147041339876997.1 |
| Degree 21 sibling: | 21.21.94142881806955162927406195366237.1 |
| Minimal sibling: | This field is its own minimal sibling |
Frobenius cycle types
| $p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/padicField/2.6.0.1}{6} }{,}\,{\href{/padicField/2.1.0.1}{1} }$ | ${\href{/padicField/3.6.0.1}{6} }{,}\,{\href{/padicField/3.1.0.1}{1} }$ | ${\href{/padicField/5.6.0.1}{6} }{,}\,{\href{/padicField/5.1.0.1}{1} }$ | R | ${\href{/padicField/11.6.0.1}{6} }{,}\,{\href{/padicField/11.1.0.1}{1} }$ | ${\href{/padicField/13.7.0.1}{7} }$ | ${\href{/padicField/17.6.0.1}{6} }{,}\,{\href{/padicField/17.1.0.1}{1} }$ | ${\href{/padicField/19.6.0.1}{6} }{,}\,{\href{/padicField/19.1.0.1}{1} }$ | ${\href{/padicField/23.3.0.1}{3} }^{2}{,}\,{\href{/padicField/23.1.0.1}{1} }$ | ${\href{/padicField/29.7.0.1}{7} }$ | ${\href{/padicField/31.3.0.1}{3} }^{2}{,}\,{\href{/padicField/31.1.0.1}{1} }$ | ${\href{/padicField/37.3.0.1}{3} }^{2}{,}\,{\href{/padicField/37.1.0.1}{1} }$ | ${\href{/padicField/41.7.0.1}{7} }$ | ${\href{/padicField/43.7.0.1}{7} }$ | ${\href{/padicField/47.3.0.1}{3} }^{2}{,}\,{\href{/padicField/47.1.0.1}{1} }$ | ${\href{/padicField/53.6.0.1}{6} }{,}\,{\href{/padicField/53.1.0.1}{1} }$ | ${\href{/padicField/59.6.0.1}{6} }{,}\,{\href{/padicField/59.1.0.1}{1} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
|
\(7\)
| $\Q_{7}$ | $x + 4$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ |
| 7.2.3.4a1.2 | $x^{6} + 18 x^{5} + 117 x^{4} + 324 x^{3} + 351 x^{2} + 162 x + 34$ | $3$ | $2$ | $4$ | $C_6$ | $$[\ ]_{3}^{2}$$ | |
|
\(173\)
| $\Q_{173}$ | $x + 171$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ |
| 173.3.2.3a1.2 | $x^{6} + 4 x^{4} + 342 x^{3} + 4 x^{2} + 684 x + 29414$ | $2$ | $3$ | $3$ | $C_6$ | $$[\ ]_{2}^{3}$$ |
Artin representations
| Label | Dimension | Conductor | Artin stem field | $G$ | Ind | $\chi(c)$ | |
|---|---|---|---|---|---|---|---|
| *42 | 1.1.1t1.a.a | $1$ | $1$ | \(\Q\) | $C_1$ | $1$ | $1$ |
| 1.173.2t1.a.a | $1$ | $ 173 $ | \(\Q(\sqrt{173}) \) | $C_2$ (as 2T1) | $1$ | $1$ | |
| 1.1211.6t1.a.a | $1$ | $ 7 \cdot 173 $ | 6.6.12431698517.1 | $C_6$ (as 6T1) | $0$ | $1$ | |
| 1.7.3t1.a.a | $1$ | $ 7 $ | \(\Q(\zeta_{7})^+\) | $C_3$ (as 3T1) | $0$ | $1$ | |
| 1.7.3t1.a.b | $1$ | $ 7 $ | \(\Q(\zeta_{7})^+\) | $C_3$ (as 3T1) | $0$ | $1$ | |
| 1.1211.6t1.a.b | $1$ | $ 7 \cdot 173 $ | 6.6.12431698517.1 | $C_6$ (as 6T1) | $0$ | $1$ | |
| *42 | 6.12431698517.7t4.a.a | $6$ | $ 7^{4} \cdot 173^{3}$ | 7.7.12431698517.1 | $F_7$ (as 7T4) | $1$ | $6$ |