magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-1, 3, 0, -2, 0, -2, 0, 1]);
sage: x = polygen(QQ); K.<a> = NumberField(x^7 - 2*x^5 - 2*x^3 + 3*x - 1)
gp: K = bnfinit(x^7 - 2*x^5 - 2*x^3 + 3*x - 1, 1)
Normalized defining polynomial
\( x^{7} - 2 x^{5} - 2 x^{3} + 3 x - 1 \)
magma: DefiningPolynomial(K);
sage: K.defining_polynomial()
gp: K.pol
Invariants
| Degree: | $7$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[5, 1]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-6155647=-\,59\cdot 101\cdot 1033\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $9.33$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $59, 101, 1033$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$
magma: IntegralBasis(K);
sage: K.integral_basis()
gp: K.zk
Class group and class number
Trivial group, which has order $1$
magma: ClassGroup(K);
sage: K.class_group().invariants()
gp: K.clgp
Unit group
magma: UK, f := UnitGroup(K);
sage: UK = K.unit_group()
| Rank: | $5$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | \( a \), \( a^{6} + a^{5} - 2 a^{4} - a^{3} - 2 a^{2} - 2 a + 3 \), \( a^{5} - a^{3} - 3 a \), \( a^{6} - a^{4} - 3 a^{2} + 1 \), \( a^{6} - 2 a^{4} - 2 a^{2} + 2 \) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 5.79769224013 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$S_7$ (as 7T7):
magma: GaloisGroup(K);
sage: K.galois_group(type='pari')
gp: polgalois(K.pol)
| A non-solvable group of order 5040 |
| The 15 conjugacy class representatives for $S_7$ |
| Character table for $S_7$ |
Intermediate fields
| The extension is primitive: there are no intermediate fields between this field and $\Q$. |
Sibling fields
| Degree 14 sibling: | Deg 14 |
| Degree 21 sibling: | Deg 21 |
| Degree 30 sibling: | data not computed |
| Degree 35 sibling: | data not computed |
| Degree 42 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.7.0.1}{7} }$ | ${\href{/LocalNumberField/3.4.0.1}{4} }{,}\,{\href{/LocalNumberField/3.3.0.1}{3} }$ | ${\href{/LocalNumberField/5.6.0.1}{6} }{,}\,{\href{/LocalNumberField/5.1.0.1}{1} }$ | ${\href{/LocalNumberField/7.4.0.1}{4} }{,}\,{\href{/LocalNumberField/7.3.0.1}{3} }$ | ${\href{/LocalNumberField/11.6.0.1}{6} }{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }$ | ${\href{/LocalNumberField/13.7.0.1}{7} }$ | ${\href{/LocalNumberField/17.7.0.1}{7} }$ | ${\href{/LocalNumberField/19.7.0.1}{7} }$ | ${\href{/LocalNumberField/23.4.0.1}{4} }{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }$ | ${\href{/LocalNumberField/29.7.0.1}{7} }$ | ${\href{/LocalNumberField/31.6.0.1}{6} }{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }$ | ${\href{/LocalNumberField/37.5.0.1}{5} }{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }$ | ${\href{/LocalNumberField/41.6.0.1}{6} }{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }$ | ${\href{/LocalNumberField/47.7.0.1}{7} }$ | ${\href{/LocalNumberField/53.4.0.1}{4} }{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }$ | R |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
magma: idealfactors := Factorization(p*Integers(K)); // get the data
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
gp: idealfactors = idealprimedec(K, p); \\ get the data
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $59$ | 59.2.1.2 | $x^{2} + 177$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 59.5.0.1 | $x^{5} - x + 9$ | $1$ | $5$ | $0$ | $C_5$ | $[\ ]^{5}$ | |
| $101$ | $\Q_{101}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{101}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 101.2.1.2 | $x^{2} + 202$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 101.3.0.1 | $x^{3} - x + 11$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | |
| 1033 | Data not computed | ||||||
Artin representations
| Label | Dimension | Conductor | Defining polynomial of Artin field | $G$ | Ind | $\chi(c)$ | |
|---|---|---|---|---|---|---|---|
| * | 1.1.1t1.1c1 | $1$ | $1$ | $x$ | $C_1$ | $1$ | $1$ |
| 1.59_101_1033.2t1.1c1 | $1$ | $ 59 \cdot 101 \cdot 1033 $ | $x^{2} - x + 1538912$ | $C_2$ (as 2T1) | $1$ | $-1$ | |
| 6.59e5_101e5_1033e5.14t46.1c1 | $6$ | $ 59^{5} \cdot 101^{5} \cdot 1033^{5}$ | $x^{7} - 2 x^{5} - 2 x^{3} + 3 x - 1$ | $S_7$ (as 7T7) | $1$ | $-4$ | |
| * | 6.59_101_1033.7t7.1c1 | $6$ | $ 59 \cdot 101 \cdot 1033 $ | $x^{7} - 2 x^{5} - 2 x^{3} + 3 x - 1$ | $S_7$ (as 7T7) | $1$ | $4$ |
| 14.59e4_101e4_1033e4.21t38.1c1 | $14$ | $ 59^{4} \cdot 101^{4} \cdot 1033^{4}$ | $x^{7} - 2 x^{5} - 2 x^{3} + 3 x - 1$ | $S_7$ (as 7T7) | $1$ | $6$ | |
| 14.59e10_101e10_1033e10.42t413.1c1 | $14$ | $ 59^{10} \cdot 101^{10} \cdot 1033^{10}$ | $x^{7} - 2 x^{5} - 2 x^{3} + 3 x - 1$ | $S_7$ (as 7T7) | $1$ | $-6$ | |
| 14.59e9_101e9_1033e9.30t565.1c1 | $14$ | $ 59^{9} \cdot 101^{9} \cdot 1033^{9}$ | $x^{7} - 2 x^{5} - 2 x^{3} + 3 x - 1$ | $S_7$ (as 7T7) | $1$ | $-4$ | |
| 14.59e5_101e5_1033e5.30t565.1c1 | $14$ | $ 59^{5} \cdot 101^{5} \cdot 1033^{5}$ | $x^{7} - 2 x^{5} - 2 x^{3} + 3 x - 1$ | $S_7$ (as 7T7) | $1$ | $4$ | |
| 15.59e5_101e5_1033e5.42t412.1c1 | $15$ | $ 59^{5} \cdot 101^{5} \cdot 1033^{5}$ | $x^{7} - 2 x^{5} - 2 x^{3} + 3 x - 1$ | $S_7$ (as 7T7) | $1$ | $5$ | |
| 15.59e10_101e10_1033e10.42t411.1c1 | $15$ | $ 59^{10} \cdot 101^{10} \cdot 1033^{10}$ | $x^{7} - 2 x^{5} - 2 x^{3} + 3 x - 1$ | $S_7$ (as 7T7) | $1$ | $-5$ | |
| 20.59e10_101e10_1033e10.70.1c1 | $20$ | $ 59^{10} \cdot 101^{10} \cdot 1033^{10}$ | $x^{7} - 2 x^{5} - 2 x^{3} + 3 x - 1$ | $S_7$ (as 7T7) | $1$ | $0$ | |
| 21.59e10_101e10_1033e10.84.1c1 | $21$ | $ 59^{10} \cdot 101^{10} \cdot 1033^{10}$ | $x^{7} - 2 x^{5} - 2 x^{3} + 3 x - 1$ | $S_7$ (as 7T7) | $1$ | $1$ | |
| 21.59e11_101e11_1033e11.42t418.1c1 | $21$ | $ 59^{11} \cdot 101^{11} \cdot 1033^{11}$ | $x^{7} - 2 x^{5} - 2 x^{3} + 3 x - 1$ | $S_7$ (as 7T7) | $1$ | $-1$ | |
| 35.59e20_101e20_1033e20.126.1c1 | $35$ | $ 59^{20} \cdot 101^{20} \cdot 1033^{20}$ | $x^{7} - 2 x^{5} - 2 x^{3} + 3 x - 1$ | $S_7$ (as 7T7) | $1$ | $-5$ | |
| 35.59e15_101e15_1033e15.70.1c1 | $35$ | $ 59^{15} \cdot 101^{15} \cdot 1033^{15}$ | $x^{7} - 2 x^{5} - 2 x^{3} + 3 x - 1$ | $S_7$ (as 7T7) | $1$ | $5$ |
Data is given for all irreducible
representations of the Galois group for the Galois closure
of this field. Those marked with * are summands in the
permutation representation coming from this field. Representations
which appear with multiplicity greater than one are indicated
by exponents on the *.