Properties

Label 7.5.4934959.1
Degree $7$
Signature $[5, 1]$
Discriminant $-\,29\cdot 379\cdot 449$
Root discriminant $9.04$
Ramified primes $29, 379, 449$
Class number $1$
Class group Trivial
Galois group $S_7$ (as 7T7)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-1, -2, 3, 4, 0, -3, -1, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^7 - x^6 - 3*x^5 + 4*x^3 + 3*x^2 - 2*x - 1)
 
gp: K = bnfinit(x^7 - x^6 - 3*x^5 + 4*x^3 + 3*x^2 - 2*x - 1, 1)
 

Normalized defining polynomial

\( x^{7} - x^{6} - 3 x^{5} + 4 x^{3} + 3 x^{2} - 2 x - 1 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $7$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[5, 1]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(-4934959=-\,29\cdot 379\cdot 449\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $9.04$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $29, 379, 449$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

Trivial group, which has order $1$

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $5$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  \( a \),  \( a^{6} - a^{5} - 3 a^{4} + 4 a^{2} + 2 a - 2 \),  \( a^{6} - a^{5} - 2 a^{4} + 2 a^{2} + a - 2 \),  \( a^{6} - a^{5} - 3 a^{4} + 3 a^{2} + 3 a \),  \( a^{5} - 3 a^{3} - 2 a^{2} + a + 2 \)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 4.89119546322 \)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$S_7$ (as 7T7):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A non-solvable group of order 5040
The 15 conjugacy class representatives for $S_7$
Character table for $S_7$

Intermediate fields

The extension is primitive: there are no intermediate fields between this field and $\Q$.

Sibling fields

Degree 14 sibling: Deg 14
Degree 21 sibling: Deg 21
Degree 30 sibling: data not computed
Degree 35 sibling: data not computed
Degree 42 siblings: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type ${\href{/LocalNumberField/2.7.0.1}{7} }$ ${\href{/LocalNumberField/3.5.0.1}{5} }{,}\,{\href{/LocalNumberField/3.2.0.1}{2} }$ ${\href{/LocalNumberField/5.7.0.1}{7} }$ ${\href{/LocalNumberField/7.6.0.1}{6} }{,}\,{\href{/LocalNumberField/7.1.0.1}{1} }$ ${\href{/LocalNumberField/11.7.0.1}{7} }$ ${\href{/LocalNumberField/13.7.0.1}{7} }$ ${\href{/LocalNumberField/17.5.0.1}{5} }{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }$ ${\href{/LocalNumberField/19.7.0.1}{7} }$ ${\href{/LocalNumberField/23.7.0.1}{7} }$ R ${\href{/LocalNumberField/31.6.0.1}{6} }{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }$ ${\href{/LocalNumberField/37.3.0.1}{3} }{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{2}$ ${\href{/LocalNumberField/41.6.0.1}{6} }{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }$ ${\href{/LocalNumberField/43.3.0.1}{3} }{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{2}$ ${\href{/LocalNumberField/47.6.0.1}{6} }{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }$ ${\href{/LocalNumberField/53.6.0.1}{6} }{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }$ ${\href{/LocalNumberField/59.4.0.1}{4} }{,}\,{\href{/LocalNumberField/59.3.0.1}{3} }$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$29$29.2.1.1$x^{2} - 29$$2$$1$$1$$C_2$$[\ ]_{2}$
29.5.0.1$x^{5} - x + 11$$1$$5$$0$$C_5$$[\ ]^{5}$
379Data not computed
449Data not computed

Artin representations

Label Dimension Conductor Defining polynomial of Artin field $G$ Ind $\chi(c)$
* 1.1.1t1.1c1$1$ $1$ $x$ $C_1$ $1$ $1$
1.29_379_449.2t1.1c1$1$ $ 29 \cdot 379 \cdot 449 $ $x^{2} - x + 1233740$ $C_2$ (as 2T1) $1$ $-1$
6.29e5_379e5_449e5.14t46.1c1$6$ $ 29^{5} \cdot 379^{5} \cdot 449^{5}$ $x^{7} - x^{6} - 3 x^{5} + 4 x^{3} + 3 x^{2} - 2 x - 1$ $S_7$ (as 7T7) $1$ $-4$
* 6.29_379_449.7t7.1c1$6$ $ 29 \cdot 379 \cdot 449 $ $x^{7} - x^{6} - 3 x^{5} + 4 x^{3} + 3 x^{2} - 2 x - 1$ $S_7$ (as 7T7) $1$ $4$
14.29e4_379e4_449e4.21t38.1c1$14$ $ 29^{4} \cdot 379^{4} \cdot 449^{4}$ $x^{7} - x^{6} - 3 x^{5} + 4 x^{3} + 3 x^{2} - 2 x - 1$ $S_7$ (as 7T7) $1$ $6$
14.29e10_379e10_449e10.42t413.1c1$14$ $ 29^{10} \cdot 379^{10} \cdot 449^{10}$ $x^{7} - x^{6} - 3 x^{5} + 4 x^{3} + 3 x^{2} - 2 x - 1$ $S_7$ (as 7T7) $1$ $-6$
14.29e9_379e9_449e9.30t565.1c1$14$ $ 29^{9} \cdot 379^{9} \cdot 449^{9}$ $x^{7} - x^{6} - 3 x^{5} + 4 x^{3} + 3 x^{2} - 2 x - 1$ $S_7$ (as 7T7) $1$ $-4$
14.29e5_379e5_449e5.30t565.1c1$14$ $ 29^{5} \cdot 379^{5} \cdot 449^{5}$ $x^{7} - x^{6} - 3 x^{5} + 4 x^{3} + 3 x^{2} - 2 x - 1$ $S_7$ (as 7T7) $1$ $4$
15.29e5_379e5_449e5.42t412.1c1$15$ $ 29^{5} \cdot 379^{5} \cdot 449^{5}$ $x^{7} - x^{6} - 3 x^{5} + 4 x^{3} + 3 x^{2} - 2 x - 1$ $S_7$ (as 7T7) $1$ $5$
15.29e10_379e10_449e10.42t411.1c1$15$ $ 29^{10} \cdot 379^{10} \cdot 449^{10}$ $x^{7} - x^{6} - 3 x^{5} + 4 x^{3} + 3 x^{2} - 2 x - 1$ $S_7$ (as 7T7) $1$ $-5$
20.29e10_379e10_449e10.70.1c1$20$ $ 29^{10} \cdot 379^{10} \cdot 449^{10}$ $x^{7} - x^{6} - 3 x^{5} + 4 x^{3} + 3 x^{2} - 2 x - 1$ $S_7$ (as 7T7) $1$ $0$
21.29e10_379e10_449e10.84.1c1$21$ $ 29^{10} \cdot 379^{10} \cdot 449^{10}$ $x^{7} - x^{6} - 3 x^{5} + 4 x^{3} + 3 x^{2} - 2 x - 1$ $S_7$ (as 7T7) $1$ $1$
21.29e11_379e11_449e11.42t418.1c1$21$ $ 29^{11} \cdot 379^{11} \cdot 449^{11}$ $x^{7} - x^{6} - 3 x^{5} + 4 x^{3} + 3 x^{2} - 2 x - 1$ $S_7$ (as 7T7) $1$ $-1$
35.29e20_379e20_449e20.126.1c1$35$ $ 29^{20} \cdot 379^{20} \cdot 449^{20}$ $x^{7} - x^{6} - 3 x^{5} + 4 x^{3} + 3 x^{2} - 2 x - 1$ $S_7$ (as 7T7) $1$ $-5$
35.29e15_379e15_449e15.70.1c1$35$ $ 29^{15} \cdot 379^{15} \cdot 449^{15}$ $x^{7} - x^{6} - 3 x^{5} + 4 x^{3} + 3 x^{2} - 2 x - 1$ $S_7$ (as 7T7) $1$ $5$

Data is given for all irreducible representations of the Galois group for the Galois closure of this field. Those marked with * are summands in the permutation representation coming from this field. Representations which appear with multiplicity greater than one are indicated by exponents on the *.