Properties

Label 7.3.52308106747638336.4
Degree $7$
Signature $[3, 2]$
Discriminant $5.231\times 10^{16}$
Root discriminant \(244.55\)
Ramified primes $2,3,7$
Class number $7$
Class group [7]
Galois group $\GL(3,2)$ (as 7T5)

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Normalized defining polynomial

sage: x = polygen(QQ); K.<a> = NumberField(x^7 - 84*x^5 - 420*x^4 + 5376*x^3 - 3780*x^2 - 16156*x + 27900)
 
gp: K = bnfinit(y^7 - 84*y^5 - 420*y^4 + 5376*y^3 - 3780*y^2 - 16156*y + 27900, 1)
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^7 - 84*x^5 - 420*x^4 + 5376*x^3 - 3780*x^2 - 16156*x + 27900);
 
oscar: Qx, x = PolynomialRing(QQ); K, a = NumberField(x^7 - 84*x^5 - 420*x^4 + 5376*x^3 - 3780*x^2 - 16156*x + 27900)
 

\( x^{7} - 84x^{5} - 420x^{4} + 5376x^{3} - 3780x^{2} - 16156x + 27900 \) Copy content Toggle raw display

sage: K.defining_polynomial()
 
gp: K.pol
 
magma: DefiningPolynomial(K);
 
oscar: defining_polynomial(K)
 

Invariants

Degree:  $7$
sage: K.degree()
 
gp: poldegree(K.pol)
 
magma: Degree(K);
 
oscar: degree(K)
 
Signature:  $[3, 2]$
sage: K.signature()
 
gp: K.sign
 
magma: Signature(K);
 
oscar: signature(K)
 
Discriminant:   \(52308106747638336\) \(\medspace = 2^{6}\cdot 3^{10}\cdot 7^{12}\) Copy content Toggle raw display
sage: K.disc()
 
gp: K.disc
 
magma: OK := Integers(K); Discriminant(OK);
 
oscar: OK = ring_of_integers(K); discriminant(OK)
 
Root discriminant:  \(244.55\)
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
magma: Abs(Discriminant(OK))^(1/Degree(K));
 
oscar: (1.0 * dK)^(1/degree(K))
 
Galois root discriminant:  $2^{6/7}3^{11/6}7^{12/7}\approx 381.493820923204$
Ramified primes:   \(2\), \(3\), \(7\) Copy content Toggle raw display
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
magma: PrimeDivisors(Discriminant(OK));
 
oscar: prime_divisors(discriminant((OK)))
 
Discriminant root field:  \(\Q\)
$\card{ \Aut(K/\Q) }$:  $1$
sage: K.automorphisms()
 
magma: Automorphisms(K);
 
oscar: automorphisms(K)
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{2}a^{4}$, $\frac{1}{2}a^{5}$, $\frac{1}{1693644758}a^{6}-\frac{75334071}{1693644758}a^{5}-\frac{110635937}{1693644758}a^{4}+\frac{95063199}{846822379}a^{3}+\frac{321771312}{846822379}a^{2}+\frac{237889456}{846822379}a-\frac{257286651}{846822379}$ Copy content Toggle raw display

sage: K.integral_basis()
 
gp: K.zk
 
magma: IntegralBasis(K);
 
oscar: basis(OK)
 

Monogenic:  Not computed
Index:  $1$
Inessential primes:  None

Class group and class number

$C_{7}$, which has order $7$

sage: K.class_group().invariants()
 
gp: K.clgp
 
magma: ClassGroup(K);
 
oscar: class_group(K)
 

Unit group

sage: UK = K.unit_group()
 
magma: UK, fUK := UnitGroup(K);
 
oscar: UK, fUK = unit_group(OK)
 
Rank:  $4$
sage: UK.rank()
 
gp: K.fu
 
magma: UnitRank(K);
 
oscar: rank(UK)
 
Torsion generator:   \( -1 \)  (order $2$) Copy content Toggle raw display
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
oscar: torsion_units_generator(OK)
 
Fundamental units:   $\frac{624139}{65140183}a^{6}+\frac{2923271}{130280366}a^{5}-\frac{117926539}{130280366}a^{4}-\frac{376029229}{65140183}a^{3}+\frac{3662077063}{65140183}a^{2}+\frac{748843452}{65140183}a-\frac{14718620443}{65140183}$, $\frac{316773621}{1693644758}a^{6}-\frac{583181993}{1693644758}a^{5}-\frac{28225648471}{1693644758}a^{4}-\frac{20983798054}{846822379}a^{3}+\frac{825322969706}{846822379}a^{2}-\frac{2223763548430}{846822379}a+\frac{2076190058777}{846822379}$, $\frac{445721063810}{846822379}a^{6}+\frac{3477320905229}{846822379}a^{5}-\frac{10312147359868}{846822379}a^{4}-\frac{267654063553424}{846822379}a^{3}+\frac{308085932065417}{846822379}a^{2}+\frac{718715716733971}{846822379}a-\frac{15\!\cdots\!07}{846822379}$, $\frac{2905684311}{1693644758}a^{6}+\frac{21936061515}{846822379}a^{5}+\frac{41048877084}{846822379}a^{4}-\frac{1984422312877}{846822379}a^{3}+\frac{1842207181319}{846822379}a^{2}+\frac{5676572460978}{846822379}a-\frac{11193212411387}{846822379}$ Copy content Toggle raw display
sage: UK.fundamental_units()
 
gp: K.fu
 
magma: [K|fUK(g): g in Generators(UK)];
 
oscar: [K(fUK(a)) for a in gens(UK)]
 
Regulator:  \( 539181.587994 \)
sage: K.regulator()
 
gp: K.reg
 
magma: Regulator(K);
 
oscar: regulator(K)
 

Class number formula

\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{3}\cdot(2\pi)^{2}\cdot 539181.587994 \cdot 7}{2\cdot\sqrt{52308106747638336}}\cr\approx \mathstrut & 2.60596345382 \end{aligned}\]

# self-contained SageMath code snippet to compute the analytic class number formula
 
x = polygen(QQ); K.<a> = NumberField(x^7 - 84*x^5 - 420*x^4 + 5376*x^3 - 3780*x^2 - 16156*x + 27900)
 
DK = K.disc(); r1,r2 = K.signature(); RK = K.regulator(); RR = RK.parent()
 
hK = K.class_number(); wK = K.unit_group().torsion_generator().order();
 
2^r1 * (2*RR(pi))^r2 * RK * hK / (wK * RR(sqrt(abs(DK))))
 
# self-contained Pari/GP code snippet to compute the analytic class number formula
 
K = bnfinit(x^7 - 84*x^5 - 420*x^4 + 5376*x^3 - 3780*x^2 - 16156*x + 27900, 1);
 
[polcoeff (lfunrootres (lfuncreate (K))[1][1][2], -1), 2^K.r1 * (2*Pi)^K.r2 * K.reg * K.no / (K.tu[1] * sqrt (abs (K.disc)))]
 
/* self-contained Magma code snippet to compute the analytic class number formula */
 
Qx<x> := PolynomialRing(QQ); K<a> := NumberField(x^7 - 84*x^5 - 420*x^4 + 5376*x^3 - 3780*x^2 - 16156*x + 27900);
 
OK := Integers(K); DK := Discriminant(OK);
 
UK, fUK := UnitGroup(OK); clK, fclK := ClassGroup(OK);
 
r1,r2 := Signature(K); RK := Regulator(K); RR := Parent(RK);
 
hK := #clK; wK := #TorsionSubgroup(UK);
 
2^r1 * (2*Pi(RR))^r2 * RK * hK / (wK * Sqrt(RR!Abs(DK)));
 
# self-contained Oscar code snippet to compute the analytic class number formula
 
Qx, x = PolynomialRing(QQ); K, a = NumberField(x^7 - 84*x^5 - 420*x^4 + 5376*x^3 - 3780*x^2 - 16156*x + 27900);
 
OK = ring_of_integers(K); DK = discriminant(OK);
 
UK, fUK = unit_group(OK); clK, fclK = class_group(OK);
 
r1,r2 = signature(K); RK = regulator(K); RR = parent(RK);
 
hK = order(clK); wK = torsion_units_order(K);
 
2^r1 * (2*pi)^r2 * RK * hK / (wK * sqrt(RR(abs(DK))))
 

Galois group

$\GL(3,2)$ (as 7T5):

sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
magma: G = GaloisGroup(K);
 
oscar: G, Gtx = galois_group(K); G, transitive_group_identification(G)
 
A non-solvable group of order 168
The 6 conjugacy class representatives for $\GL(3,2)$
Character table for $\GL(3,2)$

Intermediate fields

The extension is primitive: there are no intermediate fields between this field and $\Q$.
sage: K.subfields()[1:-1]
 
gp: L = nfsubfields(K); L[2..length(b)]
 
magma: L := Subfields(K); L[2..#L];
 
oscar: subfields(K)[2:end-1]
 

Sibling fields

Degree 8 sibling: 8.0.470772960728745024.2
Degree 14 siblings: deg 14, deg 14
Degree 21 sibling: deg 21
Degree 24 sibling: deg 24
Degree 28 sibling: deg 28
Degree 42 siblings: deg 42, deg 42, deg 42
Arithmetically equvalently sibling: 7.3.52308106747638336.6
Minimal sibling: This field is its own minimal sibling

Frobenius cycle types

$p$ $2$ $3$ $5$ $7$ $11$ $13$ $17$ $19$ $23$ $29$ $31$ $37$ $41$ $43$ $47$ $53$ $59$
Cycle type R R ${\href{/padicField/5.3.0.1}{3} }^{2}{,}\,{\href{/padicField/5.1.0.1}{1} }$ R ${\href{/padicField/11.4.0.1}{4} }{,}\,{\href{/padicField/11.2.0.1}{2} }{,}\,{\href{/padicField/11.1.0.1}{1} }$ ${\href{/padicField/13.2.0.1}{2} }^{2}{,}\,{\href{/padicField/13.1.0.1}{1} }^{3}$ ${\href{/padicField/17.7.0.1}{7} }$ ${\href{/padicField/19.4.0.1}{4} }{,}\,{\href{/padicField/19.2.0.1}{2} }{,}\,{\href{/padicField/19.1.0.1}{1} }$ ${\href{/padicField/23.7.0.1}{7} }$ ${\href{/padicField/29.3.0.1}{3} }^{2}{,}\,{\href{/padicField/29.1.0.1}{1} }$ ${\href{/padicField/31.4.0.1}{4} }{,}\,{\href{/padicField/31.2.0.1}{2} }{,}\,{\href{/padicField/31.1.0.1}{1} }$ ${\href{/padicField/37.3.0.1}{3} }^{2}{,}\,{\href{/padicField/37.1.0.1}{1} }$ ${\href{/padicField/41.4.0.1}{4} }{,}\,{\href{/padicField/41.2.0.1}{2} }{,}\,{\href{/padicField/41.1.0.1}{1} }$ ${\href{/padicField/43.3.0.1}{3} }^{2}{,}\,{\href{/padicField/43.1.0.1}{1} }$ ${\href{/padicField/47.7.0.1}{7} }$ ${\href{/padicField/53.4.0.1}{4} }{,}\,{\href{/padicField/53.2.0.1}{2} }{,}\,{\href{/padicField/53.1.0.1}{1} }$ ${\href{/padicField/59.4.0.1}{4} }{,}\,{\href{/padicField/59.2.0.1}{2} }{,}\,{\href{/padicField/59.1.0.1}{1} }$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Sage:
 
p = 7; [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
\\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Pari:
 
p = 7; pfac = idealprimedec(K, p); vector(length(pfac), j, [pfac[j][3], pfac[j][4]])
 
// to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7 in Magma:
 
p := 7; [<pr[2], Valuation(Norm(pr[1]), p)> : pr in Factorization(p*Integers(K))];
 
# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Oscar:
 
p = 7; pfac = factor(ideal(ring_of_integers(K), p)); [(e, valuation(norm(pr),p)) for (pr,e) in pfac]
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
\(2\) Copy content Toggle raw display 2.7.6.1$x^{7} + 2$$7$$1$$6$$C_7:C_3$$[\ ]_{7}^{3}$
\(3\) Copy content Toggle raw display $\Q_{3}$$x + 1$$1$$1$$0$Trivial$[\ ]$
3.3.5.2$x^{3} + 18 x + 3$$3$$1$$5$$S_3$$[5/2]_{2}$
3.3.5.2$x^{3} + 18 x + 3$$3$$1$$5$$S_3$$[5/2]_{2}$
\(7\) Copy content Toggle raw display 7.7.12.1$x^{7} + 42 x^{6} + 7$$7$$1$$12$$C_7$$[2]$