magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-1, -4, 1, 8, 1, -4, -1, 1]);
sage: x = polygen(QQ); K.<a> = NumberField(x^7 - x^6 - 4*x^5 + x^4 + 8*x^3 + x^2 - 4*x - 1)
gp: K = bnfinit(x^7 - x^6 - 4*x^5 + x^4 + 8*x^3 + x^2 - 4*x - 1, 1)
Normalized defining polynomial
\( x^{7} - x^{6} - 4 x^{5} + x^{4} + 8 x^{3} + x^{2} - 4 x - 1 \)
magma: DefiningPolynomial(K);
sage: K.defining_polynomial()
gp: K.pol
Invariants
| Degree: | $7$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[3, 2]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(17280649=4157^{2}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $10.81$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $4157$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$
magma: IntegralBasis(K);
sage: K.integral_basis()
gp: K.zk
Class group and class number
Trivial group, which has order $1$
magma: ClassGroup(K);
sage: K.class_group().invariants()
gp: K.clgp
Unit group
magma: UK, f := UnitGroup(K);
sage: UK = K.unit_group()
| Rank: | $4$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | \( a^{2} - a - 1 \), \( a \), \( a^{6} - a^{5} - 3 a^{4} + 5 a^{2} + a + 1 \), \( a + 1 \) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 6.78801046429 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$\PSL(2,7)$ (as 7T5):
magma: GaloisGroup(K);
sage: K.galois_group(type='pari')
gp: polgalois(K.pol)
| A non-solvable group of order 168 |
| The 6 conjugacy class representatives for $\GL(3,2)$ |
| Character table for $\GL(3,2)$ |
Intermediate fields
| The extension is primitive: there are no intermediate fields between this field and $\Q$. |
Sibling fields
| Degree 8 sibling: | 8.0.298620829861201.1 |
| Degree 14 siblings: | Deg 14, Deg 14 |
| Degree 21 sibling: | Deg 21 |
| Degree 24 sibling: | data not computed |
| Degree 28 sibling: | data not computed |
| Degree 42 siblings: | data not computed |
| Arithmetically equvalently sibling: | 7.3.17280649.2 |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.7.0.1}{7} }$ | ${\href{/LocalNumberField/3.7.0.1}{7} }$ | ${\href{/LocalNumberField/5.7.0.1}{7} }$ | ${\href{/LocalNumberField/7.7.0.1}{7} }$ | ${\href{/LocalNumberField/11.4.0.1}{4} }{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }$ | ${\href{/LocalNumberField/13.7.0.1}{7} }$ | ${\href{/LocalNumberField/17.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }^{3}$ | ${\href{/LocalNumberField/19.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }$ | ${\href{/LocalNumberField/23.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }$ | ${\href{/LocalNumberField/29.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{3}$ | ${\href{/LocalNumberField/37.7.0.1}{7} }$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{3}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }$ | ${\href{/LocalNumberField/47.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{3}$ | ${\href{/LocalNumberField/59.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }$ |
Cycle lengths which are repeated in a cycle type are indicated by exponents.
magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
magma: idealfactors := Factorization(p*Integers(K)); // get the data
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
gp: idealfactors = idealprimedec(K, p); \\ get the data
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 4157 | Data not computed | ||||||
Artin representations
| Label | Dimension | Conductor | Defining polynomial of Artin field | $G$ | Ind | $\chi(c)$ | |
|---|---|---|---|---|---|---|---|
| * | 1.1.1t1.1c1 | $1$ | $1$ | $x$ | $C_1$ | $1$ | $1$ |
| 3.4157e2.42t37.1c1 | $3$ | $ 4157^{2}$ | $x^{7} - x^{6} - 4 x^{5} + x^{4} + 8 x^{3} + x^{2} - 4 x - 1$ | $\GL(3,2)$ (as 7T5) | $0$ | $-1$ | |
| 3.4157e2.42t37.1c2 | $3$ | $ 4157^{2}$ | $x^{7} - x^{6} - 4 x^{5} + x^{4} + 8 x^{3} + x^{2} - 4 x - 1$ | $\GL(3,2)$ (as 7T5) | $0$ | $-1$ | |
| * | 6.4157e2.7t5.1c1 | $6$ | $ 4157^{2}$ | $x^{7} - x^{6} - 4 x^{5} + x^{4} + 8 x^{3} + x^{2} - 4 x - 1$ | $\GL(3,2)$ (as 7T5) | $1$ | $2$ |
| 7.4157e4.8t37.1c1 | $7$ | $ 4157^{4}$ | $x^{7} - x^{6} - 4 x^{5} + x^{4} + 8 x^{3} + x^{2} - 4 x - 1$ | $\GL(3,2)$ (as 7T5) | $1$ | $-1$ | |
| 8.4157e4.21t14.1c1 | $8$ | $ 4157^{4}$ | $x^{7} - x^{6} - 4 x^{5} + x^{4} + 8 x^{3} + x^{2} - 4 x - 1$ | $\GL(3,2)$ (as 7T5) | $1$ | $0$ |
Data is given for all irreducible
representations of the Galois group for the Galois closure
of this field. Those marked with * are summands in the
permutation representation coming from this field. Representations
which appear with multiplicity greater than one are indicated
by exponents on the *.