Normalized defining polynomial
\( x^{7} - 3 x^{6} - 2 x^{5} - 15 x^{4} - 62 x^{3} - 108 x^{2} - 189 x - 189 \)
Invariants
| Degree: | $7$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[1, 3]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-80565593759=-\,7^{3}\cdot 617^{3}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $36.14$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $7, 617$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $\frac{1}{3} a^{3} - \frac{1}{3} a$, $\frac{1}{9} a^{4} - \frac{1}{9} a^{3} - \frac{1}{9} a^{2} + \frac{4}{9} a - \frac{1}{3}$, $\frac{1}{9} a^{5} + \frac{1}{9} a^{3} + \frac{1}{3} a^{2} - \frac{2}{9} a - \frac{1}{3}$, $\frac{1}{243} a^{6} - \frac{1}{27} a^{5} - \frac{2}{243} a^{4} - \frac{10}{81} a^{3} + \frac{10}{243} a^{2} - \frac{20}{81} a + \frac{1}{27}$
Class group and class number
Trivial group, which has order $1$
Unit group
| Rank: | $3$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | \( \frac{668}{81} a^{6} - \frac{383}{9} a^{5} + \frac{5684}{81} a^{4} - \frac{6599}{27} a^{3} - \frac{4228}{81} a^{2} - \frac{15133}{27} a - \frac{4408}{9} \), \( \frac{1030}{243} a^{6} - \frac{373}{27} a^{5} - \frac{2762}{243} a^{4} - \frac{1777}{81} a^{3} - \frac{83768}{243} a^{2} - \frac{8630}{81} a - \frac{24872}{27} \), \( \frac{1}{81} a^{6} + \frac{1}{9} a^{5} - \frac{137}{81} a^{4} + \frac{68}{27} a^{3} + \frac{361}{81} a^{2} + \frac{355}{27} a + \frac{193}{9} \) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 5494.77424771 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 14 |
| The 5 conjugacy class representatives for $D_{7}$ |
| Character table for $D_{7}$ |
Intermediate fields
| The extension is primitive: there are no intermediate fields between this field and $\Q$. |
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.7.0.1}{7} }$ | ${\href{/LocalNumberField/3.1.0.1}{1} }^{7}$ | ${\href{/LocalNumberField/5.7.0.1}{7} }$ | R | ${\href{/LocalNumberField/11.7.0.1}{7} }$ | ${\href{/LocalNumberField/13.7.0.1}{7} }$ | ${\href{/LocalNumberField/17.7.0.1}{7} }$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }$ | ${\href{/LocalNumberField/37.7.0.1}{7} }$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }$ | ${\href{/LocalNumberField/43.7.0.1}{7} }$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $7$ | $\Q_{7}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| 7.2.1.2 | $x^{2} + 14$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 7.2.1.2 | $x^{2} + 14$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 7.2.1.2 | $x^{2} + 14$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 617 | Data not computed | ||||||
Artin representations
| Label | Dimension | Conductor | Defining polynomial of Artin field | $G$ | Ind | $\chi(c)$ | |
|---|---|---|---|---|---|---|---|
| * | 1.1.1t1.1c1 | $1$ | $1$ | $x$ | $C_1$ | $1$ | $1$ |
| 1.7_617.2t1.1c1 | $1$ | $ 7 \cdot 617 $ | $x^{2} - x + 1080$ | $C_2$ (as 2T1) | $1$ | $-1$ | |
| * | 2.7_617.7t2.1c1 | $2$ | $ 7 \cdot 617 $ | $x^{7} - 3 x^{6} - 2 x^{5} - 15 x^{4} - 62 x^{3} - 108 x^{2} - 189 x - 189$ | $D_{7}$ (as 7T2) | $1$ | $0$ |
| * | 2.7_617.7t2.1c2 | $2$ | $ 7 \cdot 617 $ | $x^{7} - 3 x^{6} - 2 x^{5} - 15 x^{4} - 62 x^{3} - 108 x^{2} - 189 x - 189$ | $D_{7}$ (as 7T2) | $1$ | $0$ |
| * | 2.7_617.7t2.1c3 | $2$ | $ 7 \cdot 617 $ | $x^{7} - 3 x^{6} - 2 x^{5} - 15 x^{4} - 62 x^{3} - 108 x^{2} - 189 x - 189$ | $D_{7}$ (as 7T2) | $1$ | $0$ |