Normalized defining polynomial
\( x^{7} - 3x^{6} + 2x^{5} - 7x^{4} + 42x^{3} - 3x^{2} - 267x + 344 \)
Invariants
Degree: | $7$ | sage: K.degree()
gp: poldegree(K.pol)
magma: Degree(K);
| |
Signature: | $[1, 3]$ | sage: K.signature()
gp: K.sign
magma: Signature(K);
| |
Discriminant: |
\(-6424482779\)
\(\medspace = -\,11^{3}\cdot 13^{6}\)
| sage: K.disc()
gp: K.disc
magma: Discriminant(Integers(K));
| |
Root discriminant: | \(25.18\) | sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
| |
Ramified primes: |
\(11\), \(13\)
| sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
magma: PrimeDivisors(Discriminant(Integers(K)));
| |
$\card{ \Aut(K/\Q) }$: | $1$ | ||
This field is not Galois over $\Q$. | |||
This is not a CM field. |
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $\frac{1}{2}a^{3}-\frac{1}{2}a^{2}-\frac{1}{2}a$, $\frac{1}{2}a^{4}-\frac{1}{2}a$, $\frac{1}{4}a^{5}-\frac{1}{4}a^{3}-\frac{1}{2}a^{2}-\frac{1}{4}a$, $\frac{1}{5764}a^{6}+\frac{707}{5764}a^{5}-\frac{937}{5764}a^{4}+\frac{465}{5764}a^{3}+\frac{203}{5764}a^{2}+\frac{27}{5764}a-\frac{678}{1441}$
Monogenic: | No | |
Index: | $8$ | |
Inessential primes: | $2$ |
Class group and class number
Trivial group, which has order $1$
Unit group
Rank: | $3$ | sage: UK.rank()
gp: K.fu
magma: UnitRank(K);
| |
Torsion generator: |
\( -1 \)
(order $2$)
| sage: UK.torsion_generator()
gp: K.tu[2]
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
| |
Fundamental units: |
$\frac{1031}{5764}a^{6}-\frac{835}{2882}a^{5}-\frac{577}{5764}a^{4}-\frac{2271}{1441}a^{3}+\frac{30609}{5764}a^{2}+\frac{9481}{1441}a-\frac{54891}{1441}$, $\frac{3449}{5764}a^{6}-\frac{1013}{1441}a^{5}-\frac{991}{5764}a^{4}-\frac{12993}{2882}a^{3}+\frac{94927}{5764}a^{2}+\frac{83307}{2882}a-\frac{155307}{1441}$, $\frac{515}{5764}a^{6}-\frac{117}{1441}a^{5}-\frac{1261}{5764}a^{4}-\frac{1734}{1441}a^{3}+\frac{9439}{5764}a^{2}+\frac{8880}{1441}a-\frac{13417}{1441}$
| sage: UK.fundamental_units()
gp: K.fu
magma: [K!f(g): g in Generators(UK)];
| |
Regulator: | \( 483.950728717 \) | sage: K.regulator()
gp: K.reg
magma: Regulator(K);
|
Class number formula
Galois group
A solvable group of order 14 |
The 5 conjugacy class representatives for $D_{7}$ |
Character table for $D_{7}$ |
Intermediate fields
The extension is primitive: there are no intermediate fields between this field and $\Q$. |
Sibling fields
Frobenius cycle types
$p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycle type | ${\href{/padicField/2.2.0.1}{2} }^{3}{,}\,{\href{/padicField/2.1.0.1}{1} }$ | ${\href{/padicField/3.7.0.1}{7} }$ | ${\href{/padicField/5.7.0.1}{7} }$ | ${\href{/padicField/7.2.0.1}{2} }^{3}{,}\,{\href{/padicField/7.1.0.1}{1} }$ | R | R | ${\href{/padicField/17.2.0.1}{2} }^{3}{,}\,{\href{/padicField/17.1.0.1}{1} }$ | ${\href{/padicField/19.2.0.1}{2} }^{3}{,}\,{\href{/padicField/19.1.0.1}{1} }$ | ${\href{/padicField/23.7.0.1}{7} }$ | ${\href{/padicField/29.2.0.1}{2} }^{3}{,}\,{\href{/padicField/29.1.0.1}{1} }$ | ${\href{/padicField/31.7.0.1}{7} }$ | ${\href{/padicField/37.7.0.1}{7} }$ | ${\href{/padicField/41.2.0.1}{2} }^{3}{,}\,{\href{/padicField/41.1.0.1}{1} }$ | ${\href{/padicField/43.2.0.1}{2} }^{3}{,}\,{\href{/padicField/43.1.0.1}{1} }$ | ${\href{/padicField/47.7.0.1}{7} }$ | ${\href{/padicField/53.7.0.1}{7} }$ | ${\href{/padicField/59.7.0.1}{7} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
$p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
---|---|---|---|---|---|---|---|
\(11\)
| $\Q_{11}$ | $x + 3$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
11.2.1.2 | $x^{2} + 33$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
11.2.1.2 | $x^{2} + 33$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
11.2.1.2 | $x^{2} + 33$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
\(13\)
| 13.7.6.1 | $x^{7} - 13$ | $7$ | $1$ | $6$ | $D_{7}$ | $[\ ]_{7}^{2}$ |
Artin representations
Label | Dimension | Conductor | Artin stem field | $G$ | Ind | $\chi(c)$ | |
---|---|---|---|---|---|---|---|
* | 1.1.1t1.a.a | $1$ | $1$ | \(\Q\) | $C_1$ | $1$ | $1$ |
1.11.2t1.a.a | $1$ | $ 11 $ | \(\Q(\sqrt{-11}) \) | $C_2$ (as 2T1) | $1$ | $-1$ | |
* | 2.1859.7t2.a.a | $2$ | $ 11 \cdot 13^{2}$ | 7.1.6424482779.1 | $D_{7}$ (as 7T2) | $1$ | $0$ |
* | 2.1859.7t2.a.b | $2$ | $ 11 \cdot 13^{2}$ | 7.1.6424482779.1 | $D_{7}$ (as 7T2) | $1$ | $0$ |
* | 2.1859.7t2.a.c | $2$ | $ 11 \cdot 13^{2}$ | 7.1.6424482779.1 | $D_{7}$ (as 7T2) | $1$ | $0$ |