Properties

Label 7.1.6424482779.1
Degree $7$
Signature $[1, 3]$
Discriminant $-6424482779$
Root discriminant \(25.18\)
Ramified primes $11,13$
Class number $1$
Class group trivial
Galois group $D_{7}$ (as 7T2)

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Normalized defining polynomial

sage: x = polygen(QQ); K.<a> = NumberField(x^7 - 3*x^6 + 2*x^5 - 7*x^4 + 42*x^3 - 3*x^2 - 267*x + 344)
 
gp: K = bnfinit(y^7 - 3*y^6 + 2*y^5 - 7*y^4 + 42*y^3 - 3*y^2 - 267*y + 344, 1)
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^7 - 3*x^6 + 2*x^5 - 7*x^4 + 42*x^3 - 3*x^2 - 267*x + 344);
 
oscar: Qx, x = PolynomialRing(QQ); K, a = NumberField(x^7 - 3*x^6 + 2*x^5 - 7*x^4 + 42*x^3 - 3*x^2 - 267*x + 344)
 

\( x^{7} - 3x^{6} + 2x^{5} - 7x^{4} + 42x^{3} - 3x^{2} - 267x + 344 \) Copy content Toggle raw display

sage: K.defining_polynomial()
 
gp: K.pol
 
magma: DefiningPolynomial(K);
 
oscar: defining_polynomial(K)
 

Invariants

Degree:  $7$
sage: K.degree()
 
gp: poldegree(K.pol)
 
magma: Degree(K);
 
oscar: degree(K)
 
Signature:  $[1, 3]$
sage: K.signature()
 
gp: K.sign
 
magma: Signature(K);
 
oscar: signature(K)
 
Discriminant:   \(-6424482779\) \(\medspace = -\,11^{3}\cdot 13^{6}\) Copy content Toggle raw display
sage: K.disc()
 
gp: K.disc
 
magma: OK := Integers(K); Discriminant(OK);
 
oscar: OK = ring_of_integers(K); discriminant(OK)
 
Root discriminant:  \(25.18\)
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
magma: Abs(Discriminant(OK))^(1/Degree(K));
 
oscar: (1.0 * dK)^(1/degree(K))
 
Galois root discriminant:  $11^{1/2}13^{6/7}\approx 29.888555773545594$
Ramified primes:   \(11\), \(13\) Copy content Toggle raw display
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
magma: PrimeDivisors(Discriminant(OK));
 
oscar: prime_divisors(discriminant((OK)))
 
Discriminant root field:  \(\Q(\sqrt{-11}) \)
$\card{ \Aut(K/\Q) }$:  $1$
sage: K.automorphisms()
 
magma: Automorphisms(K);
 
oscar: automorphisms(K)
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $\frac{1}{2}a^{3}-\frac{1}{2}a^{2}-\frac{1}{2}a$, $\frac{1}{2}a^{4}-\frac{1}{2}a$, $\frac{1}{4}a^{5}-\frac{1}{4}a^{3}-\frac{1}{2}a^{2}-\frac{1}{4}a$, $\frac{1}{5764}a^{6}+\frac{707}{5764}a^{5}-\frac{937}{5764}a^{4}+\frac{465}{5764}a^{3}+\frac{203}{5764}a^{2}+\frac{27}{5764}a-\frac{678}{1441}$ Copy content Toggle raw display

sage: K.integral_basis()
 
gp: K.zk
 
magma: IntegralBasis(K);
 
oscar: basis(OK)
 

Monogenic:  No
Index:  $8$
Inessential primes:  $2$

Class group and class number

Trivial group, which has order $1$

sage: K.class_group().invariants()
 
gp: K.clgp
 
magma: ClassGroup(K);
 
oscar: class_group(K)
 

Unit group

sage: UK = K.unit_group()
 
magma: UK, fUK := UnitGroup(K);
 
oscar: UK, fUK = unit_group(OK)
 
Rank:  $3$
sage: UK.rank()
 
gp: K.fu
 
magma: UnitRank(K);
 
oscar: rank(UK)
 
Torsion generator:   \( -1 \)  (order $2$) Copy content Toggle raw display
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
oscar: torsion_units_generator(OK)
 
Fundamental units:   $\frac{1031}{5764}a^{6}-\frac{835}{2882}a^{5}-\frac{577}{5764}a^{4}-\frac{2271}{1441}a^{3}+\frac{30609}{5764}a^{2}+\frac{9481}{1441}a-\frac{54891}{1441}$, $\frac{3449}{5764}a^{6}-\frac{1013}{1441}a^{5}-\frac{991}{5764}a^{4}-\frac{12993}{2882}a^{3}+\frac{94927}{5764}a^{2}+\frac{83307}{2882}a-\frac{155307}{1441}$, $\frac{515}{5764}a^{6}-\frac{117}{1441}a^{5}-\frac{1261}{5764}a^{4}-\frac{1734}{1441}a^{3}+\frac{9439}{5764}a^{2}+\frac{8880}{1441}a-\frac{13417}{1441}$ Copy content Toggle raw display
sage: UK.fundamental_units()
 
gp: K.fu
 
magma: [K|fUK(g): g in Generators(UK)];
 
oscar: [K(fUK(a)) for a in gens(UK)]
 
Regulator:  \( 483.950728717 \)
sage: K.regulator()
 
gp: K.reg
 
magma: Regulator(K);
 
oscar: regulator(K)
 

Class number formula

\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{1}\cdot(2\pi)^{3}\cdot 483.950728717 \cdot 1}{2\cdot\sqrt{6424482779}}\cr\approx \mathstrut & 1.49768909827 \end{aligned}\]

# self-contained SageMath code snippet to compute the analytic class number formula
 
x = polygen(QQ); K.<a> = NumberField(x^7 - 3*x^6 + 2*x^5 - 7*x^4 + 42*x^3 - 3*x^2 - 267*x + 344)
 
DK = K.disc(); r1,r2 = K.signature(); RK = K.regulator(); RR = RK.parent()
 
hK = K.class_number(); wK = K.unit_group().torsion_generator().order();
 
2^r1 * (2*RR(pi))^r2 * RK * hK / (wK * RR(sqrt(abs(DK))))
 
# self-contained Pari/GP code snippet to compute the analytic class number formula
 
K = bnfinit(x^7 - 3*x^6 + 2*x^5 - 7*x^4 + 42*x^3 - 3*x^2 - 267*x + 344, 1);
 
[polcoeff (lfunrootres (lfuncreate (K))[1][1][2], -1), 2^K.r1 * (2*Pi)^K.r2 * K.reg * K.no / (K.tu[1] * sqrt (abs (K.disc)))]
 
/* self-contained Magma code snippet to compute the analytic class number formula */
 
Qx<x> := PolynomialRing(QQ); K<a> := NumberField(x^7 - 3*x^6 + 2*x^5 - 7*x^4 + 42*x^3 - 3*x^2 - 267*x + 344);
 
OK := Integers(K); DK := Discriminant(OK);
 
UK, fUK := UnitGroup(OK); clK, fclK := ClassGroup(OK);
 
r1,r2 := Signature(K); RK := Regulator(K); RR := Parent(RK);
 
hK := #clK; wK := #TorsionSubgroup(UK);
 
2^r1 * (2*Pi(RR))^r2 * RK * hK / (wK * Sqrt(RR!Abs(DK)));
 
# self-contained Oscar code snippet to compute the analytic class number formula
 
Qx, x = PolynomialRing(QQ); K, a = NumberField(x^7 - 3*x^6 + 2*x^5 - 7*x^4 + 42*x^3 - 3*x^2 - 267*x + 344);
 
OK = ring_of_integers(K); DK = discriminant(OK);
 
UK, fUK = unit_group(OK); clK, fclK = class_group(OK);
 
r1,r2 = signature(K); RK = regulator(K); RR = parent(RK);
 
hK = order(clK); wK = torsion_units_order(K);
 
2^r1 * (2*pi)^r2 * RK * hK / (wK * sqrt(RR(abs(DK))))
 

Galois group

$D_7$ (as 7T2):

sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
magma: G = GaloisGroup(K);
 
oscar: G, Gtx = galois_group(K); G, transitive_group_identification(G)
 
A solvable group of order 14
The 5 conjugacy class representatives for $D_{7}$
Character table for $D_{7}$

Intermediate fields

The extension is primitive: there are no intermediate fields between this field and $\Q$.
sage: K.subfields()[1:-1]
 
gp: L = nfsubfields(K); L[2..length(b)]
 
magma: L := Subfields(K); L[2..#L];
 
oscar: subfields(K)[2:end-1]
 

Sibling fields

Galois closure: 14.0.454013768754343191251.1
Minimal sibling: This field is its own minimal sibling

Frobenius cycle types

$p$ $2$ $3$ $5$ $7$ $11$ $13$ $17$ $19$ $23$ $29$ $31$ $37$ $41$ $43$ $47$ $53$ $59$
Cycle type ${\href{/padicField/2.2.0.1}{2} }^{3}{,}\,{\href{/padicField/2.1.0.1}{1} }$ ${\href{/padicField/3.7.0.1}{7} }$ ${\href{/padicField/5.7.0.1}{7} }$ ${\href{/padicField/7.2.0.1}{2} }^{3}{,}\,{\href{/padicField/7.1.0.1}{1} }$ R R ${\href{/padicField/17.2.0.1}{2} }^{3}{,}\,{\href{/padicField/17.1.0.1}{1} }$ ${\href{/padicField/19.2.0.1}{2} }^{3}{,}\,{\href{/padicField/19.1.0.1}{1} }$ ${\href{/padicField/23.7.0.1}{7} }$ ${\href{/padicField/29.2.0.1}{2} }^{3}{,}\,{\href{/padicField/29.1.0.1}{1} }$ ${\href{/padicField/31.7.0.1}{7} }$ ${\href{/padicField/37.7.0.1}{7} }$ ${\href{/padicField/41.2.0.1}{2} }^{3}{,}\,{\href{/padicField/41.1.0.1}{1} }$ ${\href{/padicField/43.2.0.1}{2} }^{3}{,}\,{\href{/padicField/43.1.0.1}{1} }$ ${\href{/padicField/47.7.0.1}{7} }$ ${\href{/padicField/53.7.0.1}{7} }$ ${\href{/padicField/59.7.0.1}{7} }$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Sage:
 
p = 7; [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
\\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Pari:
 
p = 7; pfac = idealprimedec(K, p); vector(length(pfac), j, [pfac[j][3], pfac[j][4]])
 
// to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7 in Magma:
 
p := 7; [<pr[2], Valuation(Norm(pr[1]), p)> : pr in Factorization(p*Integers(K))];
 
# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Oscar:
 
p = 7; pfac = factor(ideal(ring_of_integers(K), p)); [(e, valuation(norm(pr),p)) for (pr,e) in pfac]
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
\(11\) Copy content Toggle raw display $\Q_{11}$$x + 9$$1$$1$$0$Trivial$[\ ]$
11.2.1.2$x^{2} + 11$$2$$1$$1$$C_2$$[\ ]_{2}$
11.2.1.2$x^{2} + 11$$2$$1$$1$$C_2$$[\ ]_{2}$
11.2.1.2$x^{2} + 11$$2$$1$$1$$C_2$$[\ ]_{2}$
\(13\) Copy content Toggle raw display 13.7.6.1$x^{7} + 13$$7$$1$$6$$D_{7}$$[\ ]_{7}^{2}$

Artin representations

Label Dimension Conductor Artin stem field $G$ Ind $\chi(c)$
* 1.1.1t1.a.a$1$ $1$ \(\Q\) $C_1$ $1$ $1$
1.11.2t1.a.a$1$ $ 11 $ \(\Q(\sqrt{-11}) \) $C_2$ (as 2T1) $1$ $-1$
* 2.1859.7t2.a.a$2$ $ 11 \cdot 13^{2}$ 7.1.6424482779.1 $D_{7}$ (as 7T2) $1$ $0$
* 2.1859.7t2.a.b$2$ $ 11 \cdot 13^{2}$ 7.1.6424482779.1 $D_{7}$ (as 7T2) $1$ $0$
* 2.1859.7t2.a.c$2$ $ 11 \cdot 13^{2}$ 7.1.6424482779.1 $D_{7}$ (as 7T2) $1$ $0$

Data is given for all irreducible representations of the Galois group for the Galois closure of this field. Those marked with * are summands in the permutation representation coming from this field. Representations which appear with multiplicity greater than one are indicated by exponents on the *.