Normalized defining polynomial
\( x^{7} - 3 x^{6} + 22 x^{5} - 130 x^{4} + 380 x^{3} - 372 x^{2} - 472 x + 904 \)
Invariants
| Degree: | $7$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[1, 3]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-2892422420992=-\,2^{9}\cdot 13^{3}\cdot 137^{3}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $60.28$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 13, 137$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $\frac{1}{4} a^{3} + \frac{1}{4} a^{2} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{4} a^{4} + \frac{1}{4} a^{2} - \frac{1}{2}$, $\frac{1}{32} a^{5} + \frac{1}{32} a^{4} - \frac{1}{8} a^{3} - \frac{1}{2} a^{2} - \frac{3}{8} a - \frac{1}{8}$, $\frac{1}{2496} a^{6} + \frac{5}{2496} a^{5} - \frac{1}{156} a^{4} + \frac{3}{26} a^{3} - \frac{31}{624} a^{2} - \frac{29}{624} a + \frac{49}{156}$
Class group and class number
$C_{167}$, which has order $167$
Unit group
| Rank: | $3$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | \( \frac{1}{624} a^{6} + \frac{5}{624} a^{5} - \frac{1}{39} a^{4} - \frac{1}{26} a^{3} - \frac{265}{156} a^{2} + \frac{595}{156} a - \frac{107}{39} \), \( \frac{17}{1248} a^{6} + \frac{23}{624} a^{5} + \frac{313}{1248} a^{4} - \frac{47}{104} a^{3} - \frac{683}{312} a^{2} + \frac{70}{39} a + \frac{1187}{312} \), \( \frac{37}{416} a^{6} - \frac{31}{208} a^{5} + \frac{721}{416} a^{4} - \frac{963}{104} a^{3} + \frac{2181}{104} a^{2} - \frac{48}{13} a - \frac{5501}{104} \) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 426.961730826 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 14 |
| The 5 conjugacy class representatives for $D_{7}$ |
| Character table for $D_{7}$ |
Intermediate fields
| The extension is primitive: there are no intermediate fields between this field and $\Q$. |
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/3.1.0.1}{1} }$ | ${\href{/LocalNumberField/5.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/5.1.0.1}{1} }$ | ${\href{/LocalNumberField/7.7.0.1}{7} }$ | ${\href{/LocalNumberField/11.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }$ | R | ${\href{/LocalNumberField/17.7.0.1}{7} }$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }$ | ${\href{/LocalNumberField/23.7.0.1}{7} }$ | ${\href{/LocalNumberField/29.7.0.1}{7} }$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }$ | ${\href{/LocalNumberField/37.7.0.1}{7} }$ | ${\href{/LocalNumberField/41.7.0.1}{7} }$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }$ | ${\href{/LocalNumberField/53.7.0.1}{7} }$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | $\Q_{2}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| 2.2.3.4 | $x^{2} + 10$ | $2$ | $1$ | $3$ | $C_2$ | $[3]$ | |
| 2.2.3.4 | $x^{2} + 10$ | $2$ | $1$ | $3$ | $C_2$ | $[3]$ | |
| 2.2.3.4 | $x^{2} + 10$ | $2$ | $1$ | $3$ | $C_2$ | $[3]$ | |
| $13$ | $\Q_{13}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| 13.2.1.1 | $x^{2} - 13$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 13.2.1.1 | $x^{2} - 13$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 13.2.1.1 | $x^{2} - 13$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| $137$ | $\Q_{137}$ | $x + 3$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| 137.2.1.2 | $x^{2} + 411$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 137.2.1.2 | $x^{2} + 411$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 137.2.1.2 | $x^{2} + 411$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
Artin representations
| Label | Dimension | Conductor | Defining polynomial of Artin field | $G$ | Ind | $\chi(c)$ | |
|---|---|---|---|---|---|---|---|
| * | 1.1.1t1.1c1 | $1$ | $1$ | $x$ | $C_1$ | $1$ | $1$ |
| 1.2e3_13_137.2t1.1c1 | $1$ | $ 2^{3} \cdot 13 \cdot 137 $ | $x^{2} + 3562$ | $C_2$ (as 2T1) | $1$ | $-1$ | |
| * | 2.2e3_13_137.7t2.1c1 | $2$ | $ 2^{3} \cdot 13 \cdot 137 $ | $x^{7} - 3 x^{6} + 22 x^{5} - 130 x^{4} + 380 x^{3} - 372 x^{2} - 472 x + 904$ | $D_{7}$ (as 7T2) | $1$ | $0$ |
| * | 2.2e3_13_137.7t2.1c2 | $2$ | $ 2^{3} \cdot 13 \cdot 137 $ | $x^{7} - 3 x^{6} + 22 x^{5} - 130 x^{4} + 380 x^{3} - 372 x^{2} - 472 x + 904$ | $D_{7}$ (as 7T2) | $1$ | $0$ |
| * | 2.2e3_13_137.7t2.1c3 | $2$ | $ 2^{3} \cdot 13 \cdot 137 $ | $x^{7} - 3 x^{6} + 22 x^{5} - 130 x^{4} + 380 x^{3} - 372 x^{2} - 472 x + 904$ | $D_{7}$ (as 7T2) | $1$ | $0$ |