Normalized defining polynomial
\( x^{7} - 2x^{6} + 6x^{4} + 12x^{3} - 4x^{2} - 7x - 10 \)
Invariants
Degree: | $7$ | sage: K.degree()
gp: poldegree(K.pol)
magma: Degree(K);
oscar: degree(K)
| |
Signature: | $[1, 3]$ | sage: K.signature()
gp: K.sign
magma: Signature(K);
oscar: signature(K)
| |
Discriminant: |
\(-2761677827\)
\(\medspace = -\,23^{3}\cdot 61^{3}\)
| sage: K.disc()
gp: K.disc
magma: OK := Integers(K); Discriminant(OK);
oscar: OK = ring_of_integers(K); discriminant(OK)
| |
Root discriminant: | \(22.32\) | sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
magma: Abs(Discriminant(OK))^(1/Degree(K));
oscar: (1.0 * dK)^(1/degree(K))
| |
Galois root discriminant: | $23^{1/2}61^{1/2}\approx 37.456641600656084$ | ||
Ramified primes: |
\(23\), \(61\)
| sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
magma: PrimeDivisors(Discriminant(OK));
oscar: prime_divisors(discriminant((OK)))
| |
Discriminant root field: | \(\Q(\sqrt{-1403}) \) | ||
$\card{ \Aut(K/\Q) }$: | $1$ | sage: K.automorphisms()
magma: Automorphisms(K);
oscar: automorphisms(K)
| |
This field is not Galois over $\Q$. | |||
This is not a CM field. |
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{4}a^{4}-\frac{1}{4}a-\frac{1}{2}$, $\frac{1}{4}a^{5}-\frac{1}{4}a^{2}-\frac{1}{2}a$, $\frac{1}{8}a^{6}-\frac{1}{8}a^{5}-\frac{1}{8}a^{4}-\frac{1}{8}a^{3}+\frac{3}{8}a^{2}-\frac{1}{8}a-\frac{1}{4}$
Monogenic: | No | |
Index: | $8$ | |
Inessential primes: | $2$ |
Class group and class number
Trivial group, which has order $1$
Unit group
Rank: | $3$ | sage: UK.rank()
gp: K.fu
magma: UnitRank(K);
oscar: rank(UK)
| |
Torsion generator: |
\( -1 \)
(order $2$)
| sage: UK.torsion_generator()
gp: K.tu[2]
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
oscar: torsion_units_generator(OK)
| |
Fundamental units: |
$\frac{9}{8}a^{6}-\frac{25}{8}a^{5}+\frac{13}{8}a^{4}+\frac{63}{8}a^{3}+\frac{51}{8}a^{2}-\frac{119}{8}a-\frac{3}{4}$, $\frac{7}{8}a^{6}-\frac{23}{8}a^{5}+\frac{21}{8}a^{4}+\frac{41}{8}a^{3}+\frac{13}{8}a^{2}-\frac{99}{8}a+\frac{21}{4}$, $\frac{1}{4}a^{6}-\frac{3}{4}a^{5}+\frac{3}{4}a^{4}+\frac{3}{4}a^{3}+\frac{9}{4}a^{2}-\frac{9}{4}a-\frac{3}{2}$
| sage: UK.fundamental_units()
gp: K.fu
magma: [K|fUK(g): g in Generators(UK)];
oscar: [K(fUK(a)) for a in gens(UK)]
| |
Regulator: | \( 271.968397539 \) | sage: K.regulator()
gp: K.reg
magma: Regulator(K);
oscar: regulator(K)
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{1}\cdot(2\pi)^{3}\cdot 271.968397539 \cdot 1}{2\cdot\sqrt{2761677827}}\cr\approx \mathstrut & 1.28372364596 \end{aligned}\]
Galois group
A solvable group of order 14 |
The 5 conjugacy class representatives for $D_{7}$ |
Character table for $D_{7}$ |
Intermediate fields
The extension is primitive: there are no intermediate fields between this field and $\Q$. |
Sibling fields
Galois closure: | 14.0.10700490781461249026387.1 |
Minimal sibling: | This field is its own minimal sibling |
Frobenius cycle types
$p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycle type | ${\href{/padicField/2.2.0.1}{2} }^{3}{,}\,{\href{/padicField/2.1.0.1}{1} }$ | ${\href{/padicField/3.7.0.1}{7} }$ | ${\href{/padicField/5.2.0.1}{2} }^{3}{,}\,{\href{/padicField/5.1.0.1}{1} }$ | ${\href{/padicField/7.7.0.1}{7} }$ | ${\href{/padicField/11.7.0.1}{7} }$ | ${\href{/padicField/13.7.0.1}{7} }$ | ${\href{/padicField/17.7.0.1}{7} }$ | ${\href{/padicField/19.2.0.1}{2} }^{3}{,}\,{\href{/padicField/19.1.0.1}{1} }$ | R | ${\href{/padicField/29.2.0.1}{2} }^{3}{,}\,{\href{/padicField/29.1.0.1}{1} }$ | ${\href{/padicField/31.2.0.1}{2} }^{3}{,}\,{\href{/padicField/31.1.0.1}{1} }$ | ${\href{/padicField/37.7.0.1}{7} }$ | ${\href{/padicField/41.7.0.1}{7} }$ | ${\href{/padicField/43.7.0.1}{7} }$ | ${\href{/padicField/47.7.0.1}{7} }$ | ${\href{/padicField/53.7.0.1}{7} }$ | ${\href{/padicField/59.2.0.1}{2} }^{3}{,}\,{\href{/padicField/59.1.0.1}{1} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
$p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
---|---|---|---|---|---|---|---|
\(23\)
| $\Q_{23}$ | $x + 18$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
23.2.1.1 | $x^{2} + 115$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
23.2.1.1 | $x^{2} + 115$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
23.2.1.1 | $x^{2} + 115$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
\(61\)
| $\Q_{61}$ | $x + 59$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
61.2.1.2 | $x^{2} + 122$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
61.2.1.2 | $x^{2} + 122$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
61.2.1.2 | $x^{2} + 122$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
Artin representations
Label | Dimension | Conductor | Artin stem field | $G$ | Ind | $\chi(c)$ | |
---|---|---|---|---|---|---|---|
* | 1.1.1t1.a.a | $1$ | $1$ | \(\Q\) | $C_1$ | $1$ | $1$ |
1.1403.2t1.a.a | $1$ | $ 23 \cdot 61 $ | \(\Q(\sqrt{-1403}) \) | $C_2$ (as 2T1) | $1$ | $-1$ | |
* | 2.1403.7t2.a.a | $2$ | $ 23 \cdot 61 $ | 7.1.2761677827.1 | $D_{7}$ (as 7T2) | $1$ | $0$ |
* | 2.1403.7t2.a.b | $2$ | $ 23 \cdot 61 $ | 7.1.2761677827.1 | $D_{7}$ (as 7T2) | $1$ | $0$ |
* | 2.1403.7t2.a.c | $2$ | $ 23 \cdot 61 $ | 7.1.2761677827.1 | $D_{7}$ (as 7T2) | $1$ | $0$ |