magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-4, 55, -21, -22, 17, 1, -2, 1]);
sage: x = polygen(QQ); K.<a> = NumberField(x^7 - 2*x^6 + x^5 + 17*x^4 - 22*x^3 - 21*x^2 + 55*x - 4)
gp: K = bnfinit(x^7 - 2*x^6 + x^5 + 17*x^4 - 22*x^3 - 21*x^2 + 55*x - 4, 1)
Normalized defining polynomial
\( x^{7} - 2 x^{6} + x^{5} + 17 x^{4} - 22 x^{3} - 21 x^{2} + 55 x - 4 \)
magma: DefiningPolynomial(K);
sage: K.defining_polynomial()
gp: K.pol
Invariants
| Degree: | $7$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[1, 3]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-2270799427=-\,13^{4}\cdot 43^{3}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $21.71$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $13, 43$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $\frac{1}{5} a^{5} + \frac{1}{5} a^{4} + \frac{2}{5} a^{3} + \frac{1}{5} a^{2} + \frac{2}{5} a - \frac{2}{5}$, $\frac{1}{325} a^{6} + \frac{4}{325} a^{5} + \frac{1}{13} a^{4} - \frac{158}{325} a^{3} + \frac{1}{65} a^{2} + \frac{9}{325} a + \frac{109}{325}$
magma: IntegralBasis(K);
sage: K.integral_basis()
gp: K.zk
Class group and class number
Trivial group, which has order $1$
magma: ClassGroup(K);
sage: K.class_group().invariants()
gp: K.clgp
Unit group
magma: UK, f := UnitGroup(K);
sage: UK = K.unit_group()
| Rank: | $3$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | \( \frac{14}{325} a^{6} - \frac{9}{325} a^{5} - \frac{8}{65} a^{4} + \frac{258}{325} a^{3} + \frac{1}{65} a^{2} - \frac{654}{325} a + \frac{31}{325} \), \( \frac{69}{325} a^{6} + \frac{16}{325} a^{5} + \frac{33}{65} a^{4} + \frac{1253}{325} a^{3} + \frac{212}{65} a^{2} + \frac{1726}{325} a + \frac{3491}{325} \), \( \frac{33}{325} a^{6} + \frac{2}{325} a^{5} - \frac{56}{65} a^{4} + \frac{51}{325} a^{3} + \frac{137}{65} a^{2} - \frac{288}{325} a - \frac{693}{325} \) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 226.218467209 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
magma: GaloisGroup(K);
sage: K.galois_group(type='pari')
gp: polgalois(K.pol)
| A solvable group of order 42 |
| The 7 conjugacy class representatives for $F_7$ |
| Character table for $F_7$ |
Intermediate fields
| The extension is primitive: there are no intermediate fields between this field and $\Q$. |
Sibling fields
| Galois closure: | data not computed |
| Degree 14 sibling: | Deg 14 |
| Degree 21 sibling: | Deg 21 |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.6.0.1}{6} }{,}\,{\href{/LocalNumberField/2.1.0.1}{1} }$ | ${\href{/LocalNumberField/3.6.0.1}{6} }{,}\,{\href{/LocalNumberField/3.1.0.1}{1} }$ | ${\href{/LocalNumberField/5.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/5.1.0.1}{1} }$ | ${\href{/LocalNumberField/7.6.0.1}{6} }{,}\,{\href{/LocalNumberField/7.1.0.1}{1} }$ | ${\href{/LocalNumberField/11.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }$ | R | ${\href{/LocalNumberField/17.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }$ | ${\href{/LocalNumberField/19.6.0.1}{6} }{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }$ | ${\href{/LocalNumberField/23.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }$ | ${\href{/LocalNumberField/29.6.0.1}{6} }{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }$ | ${\href{/LocalNumberField/31.7.0.1}{7} }$ | ${\href{/LocalNumberField/37.6.0.1}{6} }{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }$ | ${\href{/LocalNumberField/41.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }$ | R | ${\href{/LocalNumberField/47.7.0.1}{7} }$ | ${\href{/LocalNumberField/53.7.0.1}{7} }$ | ${\href{/LocalNumberField/59.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
magma: idealfactors := Factorization(p*Integers(K)); // get the data
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
gp: idealfactors = idealprimedec(K, p); \\ get the data
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $13$ | $\Q_{13}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| 13.3.2.2 | $x^{3} - 13$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 13.3.2.2 | $x^{3} - 13$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| $43$ | $\Q_{43}$ | $x + 9$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| 43.6.3.2 | $x^{6} - 1849 x^{2} + 795070$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ |
Artin representations
| Label | Dimension | Conductor | Defining polynomial of Artin field | $G$ | Ind | $\chi(c)$ | |
|---|---|---|---|---|---|---|---|
| * | 1.1.1t1.1c1 | $1$ | $1$ | $x$ | $C_1$ | $1$ | $1$ |
| 1.43.2t1.1c1 | $1$ | $ 43 $ | $x^{2} - x + 11$ | $C_2$ (as 2T1) | $1$ | $-1$ | |
| 1.13_43.6t1.3c1 | $1$ | $ 13 \cdot 43 $ | $x^{6} - x^{5} + 24 x^{4} - 11 x^{3} + 367 x^{2} - 298 x + 2491$ | $C_6$ (as 6T1) | $0$ | $-1$ | |
| 1.13.3t1.1c1 | $1$ | $ 13 $ | $x^{3} - x^{2} - 4 x - 1$ | $C_3$ (as 3T1) | $0$ | $1$ | |
| 1.13.3t1.1c2 | $1$ | $ 13 $ | $x^{3} - x^{2} - 4 x - 1$ | $C_3$ (as 3T1) | $0$ | $1$ | |
| 1.13_43.6t1.3c2 | $1$ | $ 13 \cdot 43 $ | $x^{6} - x^{5} + 24 x^{4} - 11 x^{3} + 367 x^{2} - 298 x + 2491$ | $C_6$ (as 6T1) | $0$ | $-1$ | |
| * | 6.13e4_43e3.7t4.1c1 | $6$ | $ 13^{4} \cdot 43^{3}$ | $x^{7} - 2 x^{6} + x^{5} + 17 x^{4} - 22 x^{3} - 21 x^{2} + 55 x - 4$ | $F_7$ (as 7T4) | $1$ | $0$ |
Data is given for all irreducible
representations of the Galois group for the Galois closure
of this field. Those marked with * are summands in the
permutation representation coming from this field. Representations
which appear with multiplicity greater than one are indicated
by exponents on the *.