Normalized defining polynomial
\( x^{7} - x^{5} - 3x^{4} - 3x^{3} + 2x^{2} + 14x - 7 \)
Invariants
Degree: | $7$ | sage: K.degree()
gp: poldegree(K.pol)
magma: Degree(K);
oscar: degree(K)
| |
Signature: | $[1, 3]$ | sage: K.signature()
gp: K.sign
magma: Signature(K);
oscar: signature(K)
| |
Discriminant: |
\(-133432831\)
\(\medspace = -\,7^{3}\cdot 73^{3}\)
| sage: K.disc()
gp: K.disc
magma: OK := Integers(K); Discriminant(OK);
oscar: OK = ring_of_integers(K); discriminant(OK)
| |
Root discriminant: | \(14.48\) | sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
magma: Abs(Discriminant(OK))^(1/Degree(K));
oscar: (1.0 * dK)^(1/degree(K))
| |
Galois root discriminant: | $7^{1/2}73^{1/2}\approx 22.60530911091463$ | ||
Ramified primes: |
\(7\), \(73\)
| sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
magma: PrimeDivisors(Discriminant(OK));
oscar: prime_divisors(discriminant((OK)))
| |
Discriminant root field: | \(\Q(\sqrt{-511}) \) | ||
$\card{ \Aut(K/\Q) }$: | $1$ | sage: K.automorphisms()
magma: Automorphisms(K);
oscar: automorphisms(K)
| |
This field is not Galois over $\Q$. | |||
This is not a CM field. |
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $\frac{1}{3}a^{5}+\frac{1}{3}a^{4}+\frac{1}{3}a^{3}-\frac{1}{3}a^{2}+\frac{1}{3}$, $\frac{1}{21}a^{6}-\frac{2}{21}a^{5}+\frac{10}{21}a^{4}+\frac{5}{21}a^{3}-\frac{2}{7}a^{2}+\frac{1}{3}a$
Monogenic: | Not computed | |
Index: | $1$ | |
Inessential primes: | None |
Class group and class number
Trivial group, which has order $1$
Unit group
Rank: | $3$ | sage: UK.rank()
gp: K.fu
magma: UnitRank(K);
oscar: rank(UK)
| |
Torsion generator: |
\( -1 \)
(order $2$)
| sage: UK.torsion_generator()
gp: K.tu[2]
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
oscar: torsion_units_generator(OK)
| |
Fundamental units: |
$\frac{1}{7}a^{6}+\frac{1}{21}a^{5}-\frac{5}{21}a^{4}-\frac{20}{21}a^{3}-\frac{25}{21}a^{2}+\frac{7}{3}$, $\frac{8}{21}a^{6}+\frac{4}{7}a^{5}+\frac{1}{7}a^{4}-\frac{16}{21}a^{3}-\frac{55}{21}a^{2}-\frac{7}{3}a+\frac{7}{3}$, $\frac{2}{21}a^{6}+\frac{1}{7}a^{5}+\frac{2}{7}a^{4}-\frac{4}{21}a^{3}-\frac{19}{21}a^{2}-\frac{1}{3}a+\frac{1}{3}$
| sage: UK.fundamental_units()
gp: K.fu
magma: [K|fUK(g): g in Generators(UK)];
oscar: [K(fUK(a)) for a in gens(UK)]
| |
Regulator: | \( 31.4514133189 \) | sage: K.regulator()
gp: K.reg
magma: Regulator(K);
oscar: regulator(K)
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{1}\cdot(2\pi)^{3}\cdot 31.4514133189 \cdot 1}{2\cdot\sqrt{133432831}}\cr\approx \mathstrut & 0.675380349987 \end{aligned}\]
Galois group
A solvable group of order 14 |
The 5 conjugacy class representatives for $D_{7}$ |
Character table for $D_{7}$ |
Intermediate fields
The extension is primitive: there are no intermediate fields between this field and $\Q$. |
Sibling fields
Galois closure: | 14.0.9098007718612700671.1 |
Minimal sibling: | This field is its own minimal sibling |
Frobenius cycle types
$p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycle type | ${\href{/padicField/2.7.0.1}{7} }$ | ${\href{/padicField/3.2.0.1}{2} }^{3}{,}\,{\href{/padicField/3.1.0.1}{1} }$ | ${\href{/padicField/5.7.0.1}{7} }$ | R | ${\href{/padicField/11.2.0.1}{2} }^{3}{,}\,{\href{/padicField/11.1.0.1}{1} }$ | ${\href{/padicField/13.7.0.1}{7} }$ | ${\href{/padicField/17.7.0.1}{7} }$ | ${\href{/padicField/19.2.0.1}{2} }^{3}{,}\,{\href{/padicField/19.1.0.1}{1} }$ | ${\href{/padicField/23.7.0.1}{7} }$ | ${\href{/padicField/29.2.0.1}{2} }^{3}{,}\,{\href{/padicField/29.1.0.1}{1} }$ | ${\href{/padicField/31.7.0.1}{7} }$ | ${\href{/padicField/37.7.0.1}{7} }$ | ${\href{/padicField/41.2.0.1}{2} }^{3}{,}\,{\href{/padicField/41.1.0.1}{1} }$ | ${\href{/padicField/43.2.0.1}{2} }^{3}{,}\,{\href{/padicField/43.1.0.1}{1} }$ | ${\href{/padicField/47.7.0.1}{7} }$ | ${\href{/padicField/53.2.0.1}{2} }^{3}{,}\,{\href{/padicField/53.1.0.1}{1} }$ | ${\href{/padicField/59.7.0.1}{7} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
$p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
---|---|---|---|---|---|---|---|
\(7\)
| $\Q_{7}$ | $x + 4$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
7.2.1.1 | $x^{2} + 21$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
7.2.1.1 | $x^{2} + 21$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
7.2.1.1 | $x^{2} + 21$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
\(73\)
| $\Q_{73}$ | $x + 68$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
73.2.1.2 | $x^{2} + 365$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
73.2.1.2 | $x^{2} + 365$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
73.2.1.2 | $x^{2} + 365$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
Artin representations
Label | Dimension | Conductor | Artin stem field | $G$ | Ind | $\chi(c)$ | |
---|---|---|---|---|---|---|---|
* | 1.1.1t1.a.a | $1$ | $1$ | \(\Q\) | $C_1$ | $1$ | $1$ |
1.511.2t1.a.a | $1$ | $ 7 \cdot 73 $ | \(\Q(\sqrt{-511}) \) | $C_2$ (as 2T1) | $1$ | $-1$ | |
* | 2.511.7t2.a.a | $2$ | $ 7 \cdot 73 $ | 7.1.133432831.1 | $D_{7}$ (as 7T2) | $1$ | $0$ |
* | 2.511.7t2.a.b | $2$ | $ 7 \cdot 73 $ | 7.1.133432831.1 | $D_{7}$ (as 7T2) | $1$ | $0$ |
* | 2.511.7t2.a.c | $2$ | $ 7 \cdot 73 $ | 7.1.133432831.1 | $D_{7}$ (as 7T2) | $1$ | $0$ |