magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![7, 33, 37, -11, -17, -1, 1]);
sage: x = polygen(QQ); K.<a> = NumberField(x^6 - x^5 - 17*x^4 - 11*x^3 + 37*x^2 + 33*x + 7)
gp: K = bnfinit(x^6 - x^5 - 17*x^4 - 11*x^3 + 37*x^2 + 33*x + 7, 1)
Normalized defining polynomial
\( x^{6} - x^{5} - 17 x^{4} - 11 x^{3} + 37 x^{2} + 33 x + 7 \)
magma: DefiningPolynomial(K);
sage: K.defining_polynomial()
gp: K.pol
Invariants
| Degree: | $6$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[6, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(66854673=3^{3}\cdot 19^{5}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $20.15$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 19$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(57=3\cdot 19\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{57}(1,·)$, $\chi_{57}(50,·)$, $\chi_{57}(56,·)$, $\chi_{57}(49,·)$, $\chi_{57}(7,·)$, $\chi_{57}(8,·)$$\rbrace$ | ||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $\frac{1}{7} a^{5} - \frac{3}{7} a^{3} + \frac{2}{7} a$
magma: IntegralBasis(K);
sage: K.integral_basis()
gp: K.zk
Class group and class number
Trivial group, which has order $1$
magma: ClassGroup(K);
sage: K.class_group().invariants()
gp: K.clgp
Unit group
magma: UK, f := UnitGroup(K);
sage: UK = K.unit_group()
| Rank: | $5$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | \( \frac{4}{7} a^{5} - a^{4} - \frac{61}{7} a^{3} - a^{2} + \frac{141}{7} a + 9 \), \( \frac{15}{7} a^{5} - 3 a^{4} - \frac{248}{7} a^{3} - 9 a^{2} + \frac{597}{7} a + 37 \), \( \frac{12}{7} a^{5} - 3 a^{4} - \frac{183}{7} a^{3} - 2 a^{2} + \frac{409}{7} a + 25 \), \( \frac{4}{7} a^{5} - a^{4} - \frac{61}{7} a^{3} - a^{2} + \frac{148}{7} a + 8 \), \( \frac{1}{7} a^{5} - \frac{24}{7} a^{3} - 2 a^{2} + \frac{86}{7} a + 5 \) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 120.272162571 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
magma: GaloisGroup(K);
sage: K.galois_group(type='pari')
gp: polgalois(K.pol)
| A cyclic group of order 6 |
| The 6 conjugacy class representatives for $C_6$ |
| Character table for $C_6$ |
Intermediate fields
| \(\Q(\sqrt{57}) \), 3.3.361.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling algebras
| Twin sextic algebra: | 3.3.361.1 $\times$ \(\Q(\sqrt{57}) \) $\times$ \(\Q\) |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.3.0.1}{3} }^{2}$ | R | ${\href{/LocalNumberField/5.6.0.1}{6} }$ | ${\href{/LocalNumberField/7.1.0.1}{1} }^{6}$ | ${\href{/LocalNumberField/11.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/13.6.0.1}{6} }$ | ${\href{/LocalNumberField/17.6.0.1}{6} }$ | R | ${\href{/LocalNumberField/23.6.0.1}{6} }$ | ${\href{/LocalNumberField/29.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/37.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/41.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/43.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }$ | ${\href{/LocalNumberField/53.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/59.3.0.1}{3} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
magma: idealfactors := Factorization(p*Integers(K)); // get the data
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
gp: idealfactors = idealprimedec(K, p); \\ get the data
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $3$ | 3.6.3.1 | $x^{6} - 6 x^{4} + 9 x^{2} - 27$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ |
| $19$ | 19.6.5.5 | $x^{6} + 1216$ | $6$ | $1$ | $5$ | $C_6$ | $[\ ]_{6}$ |
Artin representations
| Label | Dimension | Conductor | Defining polynomial of Artin field | $G$ | Ind | $\chi(c)$ | |
|---|---|---|---|---|---|---|---|
| * | 1.1.1t1.1c1 | $1$ | $1$ | $x$ | $C_1$ | $1$ | $1$ |
| * | 1.3_19.2t1.1c1 | $1$ | $ 3 \cdot 19 $ | $x^{2} - x - 14$ | $C_2$ (as 2T1) | $1$ | $1$ |
| * | 1.19.3t1.1c1 | $1$ | $ 19 $ | $x^{3} - x^{2} - 6 x + 7$ | $C_3$ (as 3T1) | $0$ | $1$ |
| * | 1.3_19.6t1.2c1 | $1$ | $ 3 \cdot 19 $ | $x^{6} - x^{5} - 17 x^{4} - 11 x^{3} + 37 x^{2} + 33 x + 7$ | $C_6$ (as 6T1) | $0$ | $1$ |
| * | 1.19.3t1.1c2 | $1$ | $ 19 $ | $x^{3} - x^{2} - 6 x + 7$ | $C_3$ (as 3T1) | $0$ | $1$ |
| * | 1.3_19.6t1.2c2 | $1$ | $ 3 \cdot 19 $ | $x^{6} - x^{5} - 17 x^{4} - 11 x^{3} + 37 x^{2} + 33 x + 7$ | $C_6$ (as 6T1) | $0$ | $1$ |
Data is given for all irreducible
representations of the Galois group for the Galois closure
of this field. Those marked with * are summands in the
permutation representation coming from this field. Representations
which appear with multiplicity greater than one are indicated
by exponents on the *.