Normalized defining polynomial
\( x^{6} - 17582x^{4} - 1104604x^{3} - 8987655x^{2} + 566024148x + 7494559340 \)
Invariants
Degree: | $6$ | sage: K.degree()
gp: poldegree(K.pol)
magma: Degree(K);
oscar: degree(K)
| |
Signature: | $[6, 0]$ | sage: K.signature()
gp: K.sign
magma: Signature(K);
oscar: signature(K)
| |
Discriminant: |
\(642050762511411201005056\)
\(\medspace = 2^{9}\cdot 839^{3}\cdot 12853^{3}\)
| sage: K.disc()
gp: K.disc
magma: OK := Integers(K); Discriminant(OK);
oscar: OK = ring_of_integers(K); discriminant(OK)
| |
Root discriminant: | \(9288.13\) | sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
magma: Abs(Discriminant(OK))^(1/Degree(K));
oscar: (1.0 * dK)^(1/degree(K))
| |
Galois root discriminant: | $2^{3/2}839^{1/2}12853^{1/2}\approx 9288.12876741058$ | ||
Ramified primes: |
\(2\), \(839\), \(12853\)
| sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
magma: PrimeDivisors(Discriminant(OK));
oscar: prime_divisors(discriminant((OK)))
| |
Discriminant root field: | $\Q(\sqrt{21567334}$) | ||
$\card{ \Aut(K/\Q) }$: | $1$ | sage: K.automorphisms()
magma: Automorphisms(K);
oscar: automorphisms(K)
| |
This field is not Galois over $\Q$. | |||
This is not a CM field. |
Integral basis (with respect to field generator \(a\))
$1$, $a$, $\frac{1}{2}a^{2}-\frac{1}{2}a$, $\frac{1}{2}a^{3}-\frac{1}{2}a$, $\frac{1}{8}a^{4}-\frac{1}{4}a^{3}+\frac{1}{8}a^{2}-\frac{1}{2}$, $\frac{1}{76963436028496}a^{5}-\frac{3704441313861}{76963436028496}a^{4}+\frac{6858909906483}{76963436028496}a^{3}-\frac{627397281259}{76963436028496}a^{2}+\frac{4216737938277}{9620429503562}a-\frac{2223772360973}{19240859007124}$
Monogenic: | Not computed | |
Index: | $1$ | |
Inessential primes: | None |
Class group and class number
$C_{2}\times C_{4}$, which has order $8$ (assuming GRH)
Unit group
Rank: | $5$ | sage: UK.rank()
gp: K.fu
magma: UnitRank(K);
oscar: rank(UK)
| |
Torsion generator: |
\( -1 \)
(order $2$)
| sage: UK.torsion_generator()
gp: K.tu[2]
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
oscar: torsion_units_generator(OK)
| |
Fundamental units: |
$\frac{80\!\cdots\!65}{19240859007124}a^{5}-\frac{23\!\cdots\!03}{38481718014248}a^{4}-\frac{34\!\cdots\!05}{4810214751781}a^{3}-\frac{13\!\cdots\!51}{38481718014248}a^{2}+\frac{13\!\cdots\!43}{9620429503562}a+\frac{20\!\cdots\!81}{9620429503562}$, $\frac{14\!\cdots\!15}{19240859007124}a^{5}-\frac{15\!\cdots\!31}{38481718014248}a^{4}-\frac{10\!\cdots\!89}{9620429503562}a^{3}-\frac{89\!\cdots\!79}{38481718014248}a^{2}+\frac{28\!\cdots\!77}{4810214751781}a+\frac{99\!\cdots\!71}{9620429503562}$, $\frac{51\!\cdots\!95}{76963436028496}a^{5}+\frac{11\!\cdots\!17}{76963436028496}a^{4}-\frac{87\!\cdots\!11}{76963436028496}a^{3}-\frac{76\!\cdots\!77}{76963436028496}a^{2}-\frac{13\!\cdots\!55}{4810214751781}a-\frac{43\!\cdots\!23}{19240859007124}$, $\frac{43\!\cdots\!21}{76963436028496}a^{5}-\frac{31\!\cdots\!79}{76963436028496}a^{4}-\frac{53\!\cdots\!37}{76963436028496}a^{3}-\frac{91\!\cdots\!77}{76963436028496}a^{2}+\frac{34\!\cdots\!99}{9620429503562}a+\frac{11\!\cdots\!29}{19240859007124}$, $\frac{14\!\cdots\!77}{9620429503562}a^{5}+\frac{12\!\cdots\!57}{38481718014248}a^{4}-\frac{50\!\cdots\!91}{19240859007124}a^{3}-\frac{87\!\cdots\!55}{38481718014248}a^{2}-\frac{30\!\cdots\!71}{4810214751781}a-\frac{50\!\cdots\!69}{9620429503562}$
| sage: UK.fundamental_units()
gp: K.fu
magma: [K|fUK(g): g in Generators(UK)];
oscar: [K(fUK(a)) for a in gens(UK)]
| |
Regulator: | \( 6885481214.24 \) (assuming GRH) | sage: K.regulator()
gp: K.reg
magma: Regulator(K);
oscar: regulator(K)
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{6}\cdot(2\pi)^{0}\cdot 6885481214.24 \cdot 8}{2\cdot\sqrt{642050762511411201005056}}\cr\approx \mathstrut & 2.19983232800 \end{aligned}\] (assuming GRH)
Galois group
A non-solvable group of order 120 |
The 7 conjugacy class representatives for $\PGL(2,5)$ |
Character table for $\PGL(2,5)$ |
Intermediate fields
The extension is primitive: there are no intermediate fields between this field and $\Q$. |
Sibling algebras
Twin sextic algebra: | \(\Q\) $\times$ 5.5.86269336.1 |
Degree 5 sibling: | 5.5.86269336.1 |
Degree 10 siblings: | deg 10, 10.10.642050762511411201005056.1 |
Degree 12 sibling: | deg 12 |
Degree 15 sibling: | deg 15 |
Degree 20 siblings: | deg 20, deg 20, deg 20 |
Degree 24 sibling: | deg 24 |
Degree 30 siblings: | deg 30, deg 30, some data not computed |
Degree 40 sibling: | deg 40 |
Minimal sibling: | 5.5.86269336.1 |
Frobenius cycle types
$p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycle type | R | ${\href{/padicField/3.5.0.1}{5} }{,}\,{\href{/padicField/3.1.0.1}{1} }$ | ${\href{/padicField/5.2.0.1}{2} }^{2}{,}\,{\href{/padicField/5.1.0.1}{1} }^{2}$ | ${\href{/padicField/7.4.0.1}{4} }{,}\,{\href{/padicField/7.1.0.1}{1} }^{2}$ | ${\href{/padicField/11.6.0.1}{6} }$ | ${\href{/padicField/13.5.0.1}{5} }{,}\,{\href{/padicField/13.1.0.1}{1} }$ | ${\href{/padicField/17.4.0.1}{4} }{,}\,{\href{/padicField/17.1.0.1}{1} }^{2}$ | ${\href{/padicField/19.5.0.1}{5} }{,}\,{\href{/padicField/19.1.0.1}{1} }$ | ${\href{/padicField/23.5.0.1}{5} }{,}\,{\href{/padicField/23.1.0.1}{1} }$ | ${\href{/padicField/29.2.0.1}{2} }^{2}{,}\,{\href{/padicField/29.1.0.1}{1} }^{2}$ | ${\href{/padicField/31.3.0.1}{3} }^{2}$ | ${\href{/padicField/37.5.0.1}{5} }{,}\,{\href{/padicField/37.1.0.1}{1} }$ | ${\href{/padicField/41.6.0.1}{6} }$ | ${\href{/padicField/43.2.0.1}{2} }^{3}$ | ${\href{/padicField/47.5.0.1}{5} }{,}\,{\href{/padicField/47.1.0.1}{1} }$ | ${\href{/padicField/53.5.0.1}{5} }{,}\,{\href{/padicField/53.1.0.1}{1} }$ | ${\href{/padicField/59.4.0.1}{4} }{,}\,{\href{/padicField/59.1.0.1}{1} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
$p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
---|---|---|---|---|---|---|---|
\(2\)
| 2.2.3.4 | $x^{2} + 10$ | $2$ | $1$ | $3$ | $C_2$ | $[3]$ |
2.4.6.2 | $x^{4} + 4 x^{3} + 16 x^{2} + 24 x + 12$ | $2$ | $2$ | $6$ | $C_2^2$ | $[3]^{2}$ | |
\(839\)
| Deg $2$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
Deg $4$ | $2$ | $2$ | $2$ | ||||
\(12853\)
| Deg $6$ | $2$ | $3$ | $3$ |