Properties

Label 6.6.2902376448.1
Degree $6$
Signature $[6, 0]$
Discriminant $2^{14}\cdot 3^{11}$
Root discriminant $37.77$
Ramified primes $2, 3$
Class number $1$
Class group Trivial
Galois group $S_4\times C_2$ (as 6T11)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-48, 0, 72, 0, -18, 0, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^6 - 18*x^4 + 72*x^2 - 48)
 
gp: K = bnfinit(x^6 - 18*x^4 + 72*x^2 - 48, 1)
 

Normalized defining polynomial

\( x^{6} - 18 x^{4} + 72 x^{2} - 48 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $6$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[6, 0]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(2902376448=2^{14}\cdot 3^{11}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $37.77$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $2, 3$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $\frac{1}{2} a^{2}$, $\frac{1}{2} a^{3}$, $\frac{1}{4} a^{4}$, $\frac{1}{8} a^{5} - \frac{1}{4} a^{3}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

Trivial group, which has order $1$

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $5$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  \( \frac{1}{4} a^{5} - \frac{1}{2} a^{4} - \frac{7}{2} a^{3} + 7 a^{2} + 4 a - 7 \),  \( \frac{1}{4} a^{4} - \frac{9}{2} a^{2} + 17 \),  \( \frac{1}{4} a^{5} + \frac{1}{4} a^{4} - 4 a^{3} - \frac{7}{2} a^{2} + 13 a + 11 \),  \( \frac{1}{4} a^{5} - \frac{1}{4} a^{4} - 4 a^{3} + \frac{7}{2} a^{2} + 13 a - 11 \),  \( \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - 9 a^{3} + 8 a^{2} + 32 a - 29 \)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 2798.30475109 \)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$C_2\times S_4$ (as 6T11):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A solvable group of order 48
The 10 conjugacy class representatives for $S_4\times C_2$
Character table for $S_4\times C_2$

Intermediate fields

3.3.1944.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling algebras

Twin sextic algebra: 4.4.497664.1 $\times$ \(\Q(\sqrt{2}) \)
Degree 6 sibling: 6.6.483729408.1
Degree 8 siblings: 8.8.990677827584.1, 8.8.8916100448256.1
Degree 12 siblings: 12.12.14975624970497949696.1, 12.12.134780624734481547264.1, 12.12.33695156183620386816.2, 12.12.33695156183620386816.1, 12.12.8423789045905096704.1, 12.12.359414999291950792704.1
Degree 16 sibling: 16.16.79496847203390844133441536.1
Degree 24 siblings: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type R R ${\href{/LocalNumberField/5.6.0.1}{6} }$ ${\href{/LocalNumberField/7.4.0.1}{4} }{,}\,{\href{/LocalNumberField/7.1.0.1}{1} }^{2}$ ${\href{/LocalNumberField/11.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }^{2}$ ${\href{/LocalNumberField/13.4.0.1}{4} }{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }$ ${\href{/LocalNumberField/17.4.0.1}{4} }{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }^{2}$ ${\href{/LocalNumberField/19.6.0.1}{6} }$ ${\href{/LocalNumberField/23.3.0.1}{3} }^{2}$ ${\href{/LocalNumberField/29.6.0.1}{6} }$ ${\href{/LocalNumberField/31.2.0.1}{2} }^{3}$ ${\href{/LocalNumberField/37.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{2}$ ${\href{/LocalNumberField/41.2.0.1}{2} }^{3}$ ${\href{/LocalNumberField/43.2.0.1}{2} }{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{4}$ ${\href{/LocalNumberField/47.3.0.1}{3} }^{2}$ ${\href{/LocalNumberField/53.6.0.1}{6} }$ ${\href{/LocalNumberField/59.4.0.1}{4} }{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$2$2.2.3.2$x^{2} + 6$$2$$1$$3$$C_2$$[3]$
2.4.11.13$x^{4} + 4 x^{2} + 14$$4$$1$$11$$D_{4}$$[3, 4]^{2}$
$3$3.6.11.2$x^{6} + 15$$6$$1$$11$$D_{6}$$[5/2]_{2}^{2}$

Artin representations

Label Dimension Conductor Defining polynomial of Artin field $G$ Ind $\chi(c)$
* 1.1.1t1.1c1$1$ $1$ $x$ $C_1$ $1$ $1$
1.2e3.2t1.1c1$1$ $ 2^{3}$ $x^{2} - 2$ $C_2$ (as 2T1) $1$ $1$
1.2e3_3.2t1.1c1$1$ $ 2^{3} \cdot 3 $ $x^{2} - 6$ $C_2$ (as 2T1) $1$ $1$
1.2e2_3.2t1.1c1$1$ $ 2^{2} \cdot 3 $ $x^{2} - 3$ $C_2$ (as 2T1) $1$ $1$
2.2e5_3e5.6t3.1c1$2$ $ 2^{5} \cdot 3^{5}$ $x^{6} - 18 x^{4} - 12 x^{3} + 81 x^{2} + 108 x + 18$ $D_{6}$ (as 6T3) $1$ $2$
* 2.2e3_3e5.3t2.1c1$2$ $ 2^{3} \cdot 3^{5}$ $x^{3} - 9 x - 6$ $S_3$ (as 3T2) $1$ $2$
3.2e11_3e5.4t5.1c1$3$ $ 2^{11} \cdot 3^{5}$ $x^{4} - 24 x^{2} - 56 x - 30$ $S_4$ (as 4T5) $1$ $3$
* 3.2e11_3e6.6t11.2c1$3$ $ 2^{11} \cdot 3^{6}$ $x^{6} - 18 x^{4} + 72 x^{2} - 48$ $S_4\times C_2$ (as 6T11) $1$ $3$
3.2e10_3e5.6t11.6c1$3$ $ 2^{10} \cdot 3^{5}$ $x^{6} - 18 x^{4} + 72 x^{2} - 48$ $S_4\times C_2$ (as 6T11) $1$ $3$
3.2e8_3e6.6t8.1c1$3$ $ 2^{8} \cdot 3^{6}$ $x^{4} - 24 x^{2} - 56 x - 30$ $S_4$ (as 4T5) $1$ $3$

Data is given for all irreducible representations of the Galois group for the Galois closure of this field. Those marked with * are summands in the permutation representation coming from this field. Representations which appear with multiplicity greater than one are indicated by exponents on the *.