magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-48, 0, 72, 0, -18, 0, 1]);
sage: x = polygen(QQ); K.<a> = NumberField(x^6 - 18*x^4 + 72*x^2 - 48)
gp: K = bnfinit(x^6 - 18*x^4 + 72*x^2 - 48, 1)
Normalized defining polynomial
\( x^{6} - 18 x^{4} + 72 x^{2} - 48 \)
magma: DefiningPolynomial(K);
sage: K.defining_polynomial()
gp: K.pol
Invariants
| Degree: | $6$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[6, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(2902376448=2^{14}\cdot 3^{11}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $37.77$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $\frac{1}{2} a^{2}$, $\frac{1}{2} a^{3}$, $\frac{1}{4} a^{4}$, $\frac{1}{8} a^{5} - \frac{1}{4} a^{3}$
magma: IntegralBasis(K);
sage: K.integral_basis()
gp: K.zk
Class group and class number
Trivial group, which has order $1$
magma: ClassGroup(K);
sage: K.class_group().invariants()
gp: K.clgp
Unit group
magma: UK, f := UnitGroup(K);
sage: UK = K.unit_group()
| Rank: | $5$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | \( \frac{1}{4} a^{5} - \frac{1}{2} a^{4} - \frac{7}{2} a^{3} + 7 a^{2} + 4 a - 7 \), \( \frac{1}{4} a^{4} - \frac{9}{2} a^{2} + 17 \), \( \frac{1}{4} a^{5} + \frac{1}{4} a^{4} - 4 a^{3} - \frac{7}{2} a^{2} + 13 a + 11 \), \( \frac{1}{4} a^{5} - \frac{1}{4} a^{4} - 4 a^{3} + \frac{7}{2} a^{2} + 13 a - 11 \), \( \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - 9 a^{3} + 8 a^{2} + 32 a - 29 \) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 2798.30475109 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times S_4$ (as 6T11):
magma: GaloisGroup(K);
sage: K.galois_group(type='pari')
gp: polgalois(K.pol)
| A solvable group of order 48 |
| The 10 conjugacy class representatives for $S_4\times C_2$ |
| Character table for $S_4\times C_2$ |
Intermediate fields
| 3.3.1944.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling algebras
| Twin sextic algebra: | 4.4.497664.1 $\times$ \(\Q(\sqrt{2}) \) |
| Degree 6 sibling: | 6.6.483729408.1 |
| Degree 8 siblings: | 8.8.990677827584.1, 8.8.8916100448256.1 |
| Degree 12 siblings: | 12.12.14975624970497949696.1, 12.12.134780624734481547264.1, 12.12.33695156183620386816.2, 12.12.33695156183620386816.1, 12.12.8423789045905096704.1, 12.12.359414999291950792704.1 |
| Degree 16 sibling: | 16.16.79496847203390844133441536.1 |
| Degree 24 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.6.0.1}{6} }$ | ${\href{/LocalNumberField/7.4.0.1}{4} }{,}\,{\href{/LocalNumberField/7.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/11.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }$ | ${\href{/LocalNumberField/17.4.0.1}{4} }{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }$ | ${\href{/LocalNumberField/23.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/37.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/47.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }$ | ${\href{/LocalNumberField/59.4.0.1}{4} }{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
magma: idealfactors := Factorization(p*Integers(K)); // get the data
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
gp: idealfactors = idealprimedec(K, p); \\ get the data
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.2.3.2 | $x^{2} + 6$ | $2$ | $1$ | $3$ | $C_2$ | $[3]$ |
| 2.4.11.13 | $x^{4} + 4 x^{2} + 14$ | $4$ | $1$ | $11$ | $D_{4}$ | $[3, 4]^{2}$ | |
| $3$ | 3.6.11.2 | $x^{6} + 15$ | $6$ | $1$ | $11$ | $D_{6}$ | $[5/2]_{2}^{2}$ |
Artin representations
| Label | Dimension | Conductor | Defining polynomial of Artin field | $G$ | Ind | $\chi(c)$ | |
|---|---|---|---|---|---|---|---|
| * | 1.1.1t1.1c1 | $1$ | $1$ | $x$ | $C_1$ | $1$ | $1$ |
| 1.2e3.2t1.1c1 | $1$ | $ 2^{3}$ | $x^{2} - 2$ | $C_2$ (as 2T1) | $1$ | $1$ | |
| 1.2e3_3.2t1.1c1 | $1$ | $ 2^{3} \cdot 3 $ | $x^{2} - 6$ | $C_2$ (as 2T1) | $1$ | $1$ | |
| 1.2e2_3.2t1.1c1 | $1$ | $ 2^{2} \cdot 3 $ | $x^{2} - 3$ | $C_2$ (as 2T1) | $1$ | $1$ | |
| 2.2e5_3e5.6t3.1c1 | $2$ | $ 2^{5} \cdot 3^{5}$ | $x^{6} - 18 x^{4} - 12 x^{3} + 81 x^{2} + 108 x + 18$ | $D_{6}$ (as 6T3) | $1$ | $2$ | |
| * | 2.2e3_3e5.3t2.1c1 | $2$ | $ 2^{3} \cdot 3^{5}$ | $x^{3} - 9 x - 6$ | $S_3$ (as 3T2) | $1$ | $2$ |
| 3.2e11_3e5.4t5.1c1 | $3$ | $ 2^{11} \cdot 3^{5}$ | $x^{4} - 24 x^{2} - 56 x - 30$ | $S_4$ (as 4T5) | $1$ | $3$ | |
| * | 3.2e11_3e6.6t11.2c1 | $3$ | $ 2^{11} \cdot 3^{6}$ | $x^{6} - 18 x^{4} + 72 x^{2} - 48$ | $S_4\times C_2$ (as 6T11) | $1$ | $3$ |
| 3.2e10_3e5.6t11.6c1 | $3$ | $ 2^{10} \cdot 3^{5}$ | $x^{6} - 18 x^{4} + 72 x^{2} - 48$ | $S_4\times C_2$ (as 6T11) | $1$ | $3$ | |
| 3.2e8_3e6.6t8.1c1 | $3$ | $ 2^{8} \cdot 3^{6}$ | $x^{4} - 24 x^{2} - 56 x - 30$ | $S_4$ (as 4T5) | $1$ | $3$ |
Data is given for all irreducible
representations of the Galois group for the Galois closure
of this field. Those marked with * are summands in the
permutation representation coming from this field. Representations
which appear with multiplicity greater than one are indicated
by exponents on the *.