Normalized defining polynomial
\( x^{6} - 2 x^{5} - 4217 x^{4} + 10313 x^{3} + 4441786 x^{2} - 12854355 x - 819074150 \)
Invariants
| Degree: | $6$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[6, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(204395798232168193=7^{3}\cdot 19^{3}\cdot 43^{3}\cdot 103^{3}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $767.50$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $7, 19, 43, 103$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $\frac{1}{75} a^{3} - \frac{1}{75} a^{2} - \frac{3}{25} a + \frac{2}{15}$, $\frac{1}{150} a^{4} - \frac{1}{15} a^{2} + \frac{1}{150} a + \frac{1}{15}$, $\frac{1}{546655671300} a^{5} + \frac{1513040939}{546655671300} a^{4} + \frac{68698221}{91109278550} a^{3} - \frac{5175845465}{21866226852} a^{2} + \frac{1498785951}{7288742284} a - \frac{1636815923}{3644371142}$
Class group and class number
$C_{2}\times C_{2}\times C_{2}\times C_{2}$, which has order $16$ (assuming GRH)
Unit group
| Rank: | $5$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 1822297.16951 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 12 |
| The 6 conjugacy class representatives for $D_{6}$ |
| Character table for $D_{6}$ |
Intermediate fields
| \(\Q(\sqrt{589057}) \), 3.3.1957.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling algebras
| Galois closure: | Deg 12 |
| Twin sextic algebra: | 3.3.1957.1 $\times$ \(\Q(\sqrt{301}) \) $\times$ \(\Q\) |
| Degree 6 sibling: | 6.6.104443432923949.2 |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/2.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/3.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/5.2.0.1}{2} }^{3}$ | R | ${\href{/LocalNumberField/11.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/13.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/17.2.0.1}{2} }^{3}$ | R | ${\href{/LocalNumberField/23.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }$ | ${\href{/LocalNumberField/37.6.0.1}{6} }$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{2}$ | R | ${\href{/LocalNumberField/47.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/53.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $7$ | 7.6.3.1 | $x^{6} - 14 x^{4} + 49 x^{2} - 1372$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ |
| $19$ | 19.2.1.2 | $x^{2} + 76$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 19.2.1.2 | $x^{2} + 76$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 19.2.1.2 | $x^{2} + 76$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 43 | Data not computed | ||||||
| $103$ | 103.2.1.2 | $x^{2} + 206$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 103.4.2.1 | $x^{4} + 927 x^{2} + 265225$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
Artin representations
| Label | Dimension | Conductor | Defining polynomial of Artin field | $G$ | Ind | $\chi(c)$ | |
|---|---|---|---|---|---|---|---|
| * | 1.1.1t1.1c1 | $1$ | $1$ | $x$ | $C_1$ | $1$ | $1$ |
| 1.19_103.2t1.1c1 | $1$ | $ 19 \cdot 103 $ | $x^{2} - x - 489$ | $C_2$ (as 2T1) | $1$ | $1$ | |
| 1.7_43.2t1.1c1 | $1$ | $ 7 \cdot 43 $ | $x^{2} - x - 75$ | $C_2$ (as 2T1) | $1$ | $1$ | |
| * | 1.7_19_43_103.2t1.1c1 | $1$ | $ 7 \cdot 19 \cdot 43 \cdot 103 $ | $x^{2} - x - 147264$ | $C_2$ (as 2T1) | $1$ | $1$ |
| * | 2.19_103.3t2.1c1 | $2$ | $ 19 \cdot 103 $ | $x^{3} - x^{2} - 9 x + 10$ | $S_3$ (as 3T2) | $1$ | $2$ |
| * | 2.7e2_19_43e2_103.6t3.2c1 | $2$ | $ 7^{2} \cdot 19 \cdot 43^{2} \cdot 103 $ | $x^{6} - 2 x^{5} - 4217 x^{4} + 10313 x^{3} + 4441786 x^{2} - 12854355 x - 819074150$ | $D_{6}$ (as 6T3) | $1$ | $2$ |