Normalized defining polynomial
\( x^{6} - 3 x^{5} - 8 x^{4} + 19 x^{3} + 24 x^{2} - 29 x - 29 \)
Invariants
| Degree: | $6$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[6, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(19120976=2^{4}\cdot 7^{2}\cdot 29^{3}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $16.35$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 7, 29$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $\frac{1}{5} a^{5} - \frac{2}{5} a^{4} - \frac{1}{5} a^{2} - \frac{2}{5} a - \frac{1}{5}$
Class group and class number
Trivial group, which has order $1$
Unit group
| Rank: | $5$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | \( \frac{1}{5} a^{5} - \frac{2}{5} a^{4} - 2 a^{3} + \frac{14}{5} a^{2} + \frac{18}{5} a - \frac{16}{5} \), \( \frac{1}{5} a^{5} - \frac{7}{5} a^{4} + a^{3} + \frac{39}{5} a^{2} - \frac{32}{5} a - \frac{56}{5} \), \( \frac{2}{5} a^{5} - \frac{9}{5} a^{4} - a^{3} + \frac{48}{5} a^{2} - \frac{9}{5} a - \frac{52}{5} \), \( \frac{2}{5} a^{5} - \frac{4}{5} a^{4} - 3 a^{3} + \frac{8}{5} a^{2} + \frac{36}{5} a + \frac{18}{5} \), \( a^{4} - 2 a^{3} - 8 a^{2} + 8 a + 17 \) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 63.7407151811 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_3\times S_3$ (as 6T5):
| A solvable group of order 18 |
| The 9 conjugacy class representatives for $S_3\times C_3$ |
| Character table for $S_3\times C_3$ |
Intermediate fields
| \(\Q(\sqrt{29}) \) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling algebras
| Galois closure: | 18.18.822466862771545065687732224.1 |
| Twin sextic algebra: | \(\Q(\zeta_{7})^+\) $\times$ 3.3.5684.1 |
| Degree 9 sibling: | 9.9.183637853504.1 |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.6.0.1}{6} }$ | ${\href{/LocalNumberField/5.3.0.1}{3} }{,}\,{\href{/LocalNumberField/5.1.0.1}{1} }^{3}$ | R | ${\href{/LocalNumberField/11.6.0.1}{6} }$ | ${\href{/LocalNumberField/13.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/17.6.0.1}{6} }$ | ${\href{/LocalNumberField/19.6.0.1}{6} }$ | ${\href{/LocalNumberField/23.3.0.1}{3} }^{2}$ | R | ${\href{/LocalNumberField/31.6.0.1}{6} }$ | ${\href{/LocalNumberField/37.6.0.1}{6} }$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }$ | ${\href{/LocalNumberField/53.3.0.1}{3} }{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{3}$ | ${\href{/LocalNumberField/59.3.0.1}{3} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.6.4.2 | $x^{6} - 2 x^{3} + 4$ | $3$ | $2$ | $4$ | $S_3\times C_3$ | $[\ ]_{3}^{6}$ |
| $7$ | 7.3.2.3 | $x^{3} - 28$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ |
| 7.3.0.1 | $x^{3} - x + 2$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | |
| $29$ | 29.2.1.1 | $x^{2} - 29$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 29.2.1.1 | $x^{2} - 29$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 29.2.1.1 | $x^{2} - 29$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
Artin representations
| Label | Dimension | Conductor | Defining polynomial of Artin field | $G$ | Ind | $\chi(c)$ | |
|---|---|---|---|---|---|---|---|
| * | 1.1.1t1.1c1 | $1$ | $1$ | $x$ | $C_1$ | $1$ | $1$ |
| * | 1.29.2t1.1c1 | $1$ | $ 29 $ | $x^{2} - x - 7$ | $C_2$ (as 2T1) | $1$ | $1$ |
| 1.7_29.6t1.1c1 | $1$ | $ 7 \cdot 29 $ | $x^{6} - x^{5} - 26 x^{4} + 17 x^{3} + 159 x^{2} - 64 x - 169$ | $C_6$ (as 6T1) | $0$ | $1$ | |
| 1.7_29.6t1.1c2 | $1$ | $ 7 \cdot 29 $ | $x^{6} - x^{5} - 26 x^{4} + 17 x^{3} + 159 x^{2} - 64 x - 169$ | $C_6$ (as 6T1) | $0$ | $1$ | |
| 1.7.3t1.1c1 | $1$ | $ 7 $ | $x^{3} - x^{2} - 2 x + 1$ | $C_3$ (as 3T1) | $0$ | $1$ | |
| 1.7.3t1.1c2 | $1$ | $ 7 $ | $x^{3} - x^{2} - 2 x + 1$ | $C_3$ (as 3T1) | $0$ | $1$ | |
| 2.2e2_7e2_29.3t2.1c1 | $2$ | $ 2^{2} \cdot 7^{2} \cdot 29 $ | $x^{3} - 14 x - 14$ | $S_3$ (as 3T2) | $1$ | $2$ | |
| * | 2.2e2_7_29.6t5.1c1 | $2$ | $ 2^{2} \cdot 7 \cdot 29 $ | $x^{6} - 3 x^{5} - 8 x^{4} + 19 x^{3} + 24 x^{2} - 29 x - 29$ | $S_3\times C_3$ (as 6T5) | $0$ | $2$ |
| * | 2.2e2_7_29.6t5.1c2 | $2$ | $ 2^{2} \cdot 7 \cdot 29 $ | $x^{6} - 3 x^{5} - 8 x^{4} + 19 x^{3} + 24 x^{2} - 29 x - 29$ | $S_3\times C_3$ (as 6T5) | $0$ | $2$ |