Normalized defining polynomial
\( x^{6} - 19x^{4} + 38x^{2} - 19 \)
Invariants
Degree: | $6$ | sage: K.degree()
gp: poldegree(K.pol)
magma: Degree(K);
oscar: degree(K)
| |
Signature: | $[6, 0]$ | sage: K.signature()
gp: K.sign
magma: Signature(K);
oscar: signature(K)
| |
Discriminant: |
\(158470336\)
\(\medspace = 2^{6}\cdot 19^{5}\)
| sage: K.disc()
gp: K.disc
magma: OK := Integers(K); Discriminant(OK);
oscar: OK = ring_of_integers(K); discriminant(OK)
| |
Root discriminant: | \(23.26\) | sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
magma: Abs(Discriminant(OK))^(1/Degree(K));
oscar: (1.0 * dK)^(1/degree(K))
| |
Ramified primes: |
\(2\), \(19\)
| sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
magma: PrimeDivisors(Discriminant(OK));
oscar: prime_divisors(discriminant((OK)))
| |
Discriminant root field: | \(\Q(\sqrt{19}) \) | ||
$\card{ \Gal(K/\Q) }$: | $6$ | sage: K.automorphisms()
magma: Automorphisms(K);
oscar: automorphisms(K)
| |
This field is Galois and abelian over $\Q$. | |||
Conductor: | \(76=2^{2}\cdot 19\) | ||
Dirichlet character group: | $\lbrace$$\chi_{76}(1,·)$, $\chi_{76}(27,·)$, $\chi_{76}(49,·)$, $\chi_{76}(75,·)$, $\chi_{76}(45,·)$, $\chi_{76}(31,·)$$\rbrace$ | ||
This is not a CM field. |
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{7}a^{4}-\frac{2}{7}a^{2}-\frac{3}{7}$, $\frac{1}{7}a^{5}-\frac{2}{7}a^{3}-\frac{3}{7}a$
Monogenic: | Not computed | |
Index: | $1$ | |
Inessential primes: | None |
Class group and class number
Trivial group, which has order $1$
Unit group
Rank: | $5$ | sage: UK.rank()
gp: K.fu
magma: UnitRank(K);
oscar: rank(UK)
| |
Torsion generator: |
\( -1 \)
(order $2$)
| sage: UK.torsion_generator()
gp: K.tu[2]
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
oscar: torsion_units_generator(OK)
| |
Fundamental units: |
$\frac{1}{7}a^{4}-\frac{16}{7}a^{2}+\frac{11}{7}$, $\frac{3}{7}a^{4}-\frac{55}{7}a^{2}+\frac{68}{7}$, $\frac{3}{7}a^{5}-\frac{3}{7}a^{4}-\frac{55}{7}a^{3}+\frac{55}{7}a^{2}+\frac{75}{7}a-\frac{68}{7}$, $\frac{1}{7}a^{4}-\frac{16}{7}a^{2}-a+\frac{11}{7}$, $\frac{5}{7}a^{5}+\frac{9}{7}a^{4}-\frac{87}{7}a^{3}-\frac{158}{7}a^{2}+\frac{55}{7}a+\frac{134}{7}$
| sage: UK.fundamental_units()
gp: K.fu
magma: [K|fUK(g): g in Generators(UK)];
oscar: [K(fUK(a)) for a in gens(UK)]
| |
Regulator: | \( 91.4119887805 \) | sage: K.regulator()
gp: K.reg
magma: Regulator(K);
oscar: regulator(K)
|
Class number formula
$\displaystyle\lim_{s\to 1} (s-1)\zeta_K(s) = \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}} \approx\frac{2^{6}\cdot(2\pi)^{0}\cdot 91.4119887805 \cdot 1}{2\cdot\sqrt{158470336}}\approx 0.232369512362$
Galois group
A cyclic group of order 6 |
The 6 conjugacy class representatives for $C_6$ |
Character table for $C_6$ |
Intermediate fields
\(\Q(\sqrt{19}) \), 3.3.361.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling algebras
Twin sextic algebra: | 3.3.361.1 $\times$ \(\Q(\sqrt{19}) \) $\times$ \(\Q\) |
Frobenius cycle types
$p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycle type | R | ${\href{/padicField/3.3.0.1}{3} }^{2}$ | ${\href{/padicField/5.3.0.1}{3} }^{2}$ | ${\href{/padicField/7.2.0.1}{2} }^{3}$ | ${\href{/padicField/11.2.0.1}{2} }^{3}$ | ${\href{/padicField/13.6.0.1}{6} }$ | ${\href{/padicField/17.3.0.1}{3} }^{2}$ | R | ${\href{/padicField/23.6.0.1}{6} }$ | ${\href{/padicField/29.6.0.1}{6} }$ | ${\href{/padicField/31.1.0.1}{1} }^{6}$ | ${\href{/padicField/37.2.0.1}{2} }^{3}$ | ${\href{/padicField/41.6.0.1}{6} }$ | ${\href{/padicField/43.6.0.1}{6} }$ | ${\href{/padicField/47.6.0.1}{6} }$ | ${\href{/padicField/53.6.0.1}{6} }$ | ${\href{/padicField/59.3.0.1}{3} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
$p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
---|---|---|---|---|---|---|---|
\(2\)
| 2.6.6.5 | $x^{6} + 6 x^{5} + 32 x^{4} + 90 x^{3} + 199 x^{2} + 204 x + 149$ | $2$ | $3$ | $6$ | $C_6$ | $[2]^{3}$ |
\(19\)
| 19.6.5.2 | $x^{6} + 152$ | $6$ | $1$ | $5$ | $C_6$ | $[\ ]_{6}$ |
Artin representations
Label | Dimension | Conductor | Artin stem field | $G$ | Ind | $\chi(c)$ | |
---|---|---|---|---|---|---|---|
* | 1.1.1t1.a.a | $1$ | $1$ | \(\Q\) | $C_1$ | $1$ | $1$ |
* | 1.76.2t1.a.a | $1$ | $ 2^{2} \cdot 19 $ | \(\Q(\sqrt{19}) \) | $C_2$ (as 2T1) | $1$ | $1$ |
* | 1.19.3t1.a.a | $1$ | $ 19 $ | 3.3.361.1 | $C_3$ (as 3T1) | $0$ | $1$ |
* | 1.76.6t1.b.a | $1$ | $ 2^{2} \cdot 19 $ | 6.6.158470336.1 | $C_6$ (as 6T1) | $0$ | $1$ |
* | 1.19.3t1.a.b | $1$ | $ 19 $ | 3.3.361.1 | $C_3$ (as 3T1) | $0$ | $1$ |
* | 1.76.6t1.b.b | $1$ | $ 2^{2} \cdot 19 $ | 6.6.158470336.1 | $C_6$ (as 6T1) | $0$ | $1$ |