Normalized defining polynomial
\( x^{6} - 4x^{4} - 16x^{3} - 27x^{2} + 32x + 64 \)
Invariants
Degree: | $6$ | sage: K.degree()
gp: poldegree(K.pol)
magma: Degree(K);
oscar: degree(K)
| |
Signature: | $[4, 1]$ | sage: K.signature()
gp: K.sign
magma: Signature(K);
oscar: signature(K)
| |
Discriminant: |
\(-91517952\)
\(\medspace = -\,2^{10}\cdot 3\cdot 31^{3}\)
| sage: K.disc()
gp: K.disc
magma: OK := Integers(K); Discriminant(OK);
oscar: OK = ring_of_integers(K); discriminant(OK)
| |
Root discriminant: | \(21.23\) | sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
magma: Abs(Discriminant(OK))^(1/Degree(K));
oscar: (1.0 * dK)^(1/degree(K))
| |
Galois root discriminant: | $2^{2}3^{1/2}31^{1/2}\approx 38.57460304397182$ | ||
Ramified primes: |
\(2\), \(3\), \(31\)
| sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
magma: PrimeDivisors(Discriminant(OK));
oscar: prime_divisors(discriminant((OK)))
| |
Discriminant root field: | \(\Q(\sqrt{-93}) \) | ||
$\card{ \Aut(K/\Q) }$: | $1$ | sage: K.automorphisms()
magma: Automorphisms(K);
oscar: automorphisms(K)
| |
This field is not Galois over $\Q$. | |||
This is not a CM field. |
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $\frac{1}{120}a^{5}+\frac{7}{15}a^{4}+\frac{1}{10}a^{3}+\frac{7}{15}a^{2}-\frac{11}{120}a+\frac{2}{15}$
Monogenic: | Not computed | |
Index: | $1$ | |
Inessential primes: | None |
Class group and class number
Trivial group, which has order $1$
Unit group
Rank: | $4$ | sage: UK.rank()
gp: K.fu
magma: UnitRank(K);
oscar: rank(UK)
| |
Torsion generator: |
\( -1 \)
(order $2$)
| sage: UK.torsion_generator()
gp: K.tu[2]
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
oscar: torsion_units_generator(OK)
| |
Fundamental units: |
$\frac{41}{40}a^{5}-\frac{8}{5}a^{4}-\frac{17}{10}a^{3}-\frac{68}{5}a^{2}-\frac{251}{40}a+\frac{212}{5}$, $\frac{3}{10}a^{5}-\frac{1}{5}a^{4}-\frac{2}{5}a^{3}-\frac{21}{5}a^{2}-\frac{53}{10}a+\frac{29}{5}$, $\frac{247}{120}a^{5}-\frac{41}{15}a^{4}-\frac{33}{10}a^{3}-\frac{431}{15}a^{2}-\frac{2357}{120}a+\frac{1064}{15}$, $\frac{269}{120}a^{5}-\frac{52}{15}a^{4}-\frac{41}{10}a^{3}-\frac{457}{15}a^{2}-\frac{1879}{120}a+\frac{1438}{15}$
| sage: UK.fundamental_units()
gp: K.fu
magma: [K|fUK(g): g in Generators(UK)];
oscar: [K(fUK(a)) for a in gens(UK)]
| |
Regulator: | \( 372.875096831 \) | sage: K.regulator()
gp: K.reg
magma: Regulator(K);
oscar: regulator(K)
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{4}\cdot(2\pi)^{1}\cdot 372.875096831 \cdot 1}{2\cdot\sqrt{91517952}}\cr\approx \mathstrut & 1.95920593657 \end{aligned}\]
Galois group
$\SOPlus(4,2)$ (as 6T13):
A solvable group of order 72 |
The 9 conjugacy class representatives for $C_3^2:D_4$ |
Character table for $C_3^2:D_4$ |
Intermediate fields
\(\Q(\sqrt{31}) \) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling algebras
Twin sextic algebra: | 6.0.53568.1 |
Degree 6 sibling: | 6.0.53568.1 |
Degree 9 sibling: | 9.3.13178585088.1 |
Degree 12 siblings: | deg 12, deg 12, deg 12, deg 12, deg 12, deg 12 |
Degree 18 siblings: | deg 18, deg 18, deg 18 |
Degree 24 siblings: | data not computed |
Degree 36 siblings: | data not computed |
Minimal sibling: | 6.0.53568.1 |
Frobenius cycle types
$p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycle type | R | R | ${\href{/padicField/5.3.0.1}{3} }{,}\,{\href{/padicField/5.2.0.1}{2} }{,}\,{\href{/padicField/5.1.0.1}{1} }$ | ${\href{/padicField/7.6.0.1}{6} }$ | ${\href{/padicField/11.3.0.1}{3} }{,}\,{\href{/padicField/11.2.0.1}{2} }{,}\,{\href{/padicField/11.1.0.1}{1} }$ | ${\href{/padicField/13.6.0.1}{6} }$ | ${\href{/padicField/17.4.0.1}{4} }{,}\,{\href{/padicField/17.2.0.1}{2} }$ | ${\href{/padicField/19.6.0.1}{6} }$ | ${\href{/padicField/23.3.0.1}{3} }{,}\,{\href{/padicField/23.2.0.1}{2} }{,}\,{\href{/padicField/23.1.0.1}{1} }$ | ${\href{/padicField/29.4.0.1}{4} }{,}\,{\href{/padicField/29.2.0.1}{2} }$ | R | ${\href{/padicField/37.6.0.1}{6} }$ | ${\href{/padicField/41.3.0.1}{3} }{,}\,{\href{/padicField/41.2.0.1}{2} }{,}\,{\href{/padicField/41.1.0.1}{1} }$ | ${\href{/padicField/43.2.0.1}{2} }^{2}{,}\,{\href{/padicField/43.1.0.1}{1} }^{2}$ | ${\href{/padicField/47.4.0.1}{4} }{,}\,{\href{/padicField/47.2.0.1}{2} }$ | ${\href{/padicField/53.4.0.1}{4} }{,}\,{\href{/padicField/53.2.0.1}{2} }$ | ${\href{/padicField/59.4.0.1}{4} }{,}\,{\href{/padicField/59.2.0.1}{2} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
$p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
---|---|---|---|---|---|---|---|
\(2\)
| 2.2.2.1 | $x^{2} + 2 x + 2$ | $2$ | $1$ | $2$ | $C_2$ | $[2]$ |
2.4.8.6 | $x^{4} + 6 x^{2} + 4 x + 10$ | $4$ | $1$ | $8$ | $D_{4}$ | $[2, 3]^{2}$ | |
\(3\)
| $\Q_{3}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
3.2.1.2 | $x^{2} + 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
3.3.0.1 | $x^{3} + 2 x + 1$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | |
\(31\)
| 31.6.3.1 | $x^{6} + 961 x^{2} - 834148$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ |
Artin representations
Label | Dimension | Conductor | Artin stem field | $G$ | Ind | $\chi(c)$ | |
---|---|---|---|---|---|---|---|
* | 1.1.1t1.a.a | $1$ | $1$ | \(\Q\) | $C_1$ | $1$ | $1$ |
1.372.2t1.a.a | $1$ | $ 2^{2} \cdot 3 \cdot 31 $ | \(\Q(\sqrt{-93}) \) | $C_2$ (as 2T1) | $1$ | $-1$ | |
* | 1.124.2t1.a.a | $1$ | $ 2^{2} \cdot 31 $ | \(\Q(\sqrt{31}) \) | $C_2$ (as 2T1) | $1$ | $1$ |
1.3.2t1.a.a | $1$ | $ 3 $ | \(\Q(\sqrt{-3}) \) | $C_2$ (as 2T1) | $1$ | $-1$ | |
2.5952.4t3.b.a | $2$ | $ 2^{6} \cdot 3 \cdot 31 $ | 4.0.17856.2 | $D_{4}$ (as 4T3) | $1$ | $0$ | |
4.6642432.12t34.c.a | $4$ | $ 2^{8} \cdot 3^{3} \cdot 31^{2}$ | 6.4.91517952.1 | $C_3^2:D_4$ (as 6T13) | $1$ | $-2$ | |
* | 4.738048.6t13.a.a | $4$ | $ 2^{8} \cdot 3 \cdot 31^{2}$ | 6.4.91517952.1 | $C_3^2:D_4$ (as 6T13) | $1$ | $2$ |
4.17856.6t13.a.a | $4$ | $ 2^{6} \cdot 3^{2} \cdot 31 $ | 6.4.91517952.1 | $C_3^2:D_4$ (as 6T13) | $1$ | $0$ | |
4.274553856.12t34.a.a | $4$ | $ 2^{10} \cdot 3^{2} \cdot 31^{3}$ | 6.4.91517952.1 | $C_3^2:D_4$ (as 6T13) | $1$ | $0$ |