Normalized defining polynomial
\( x^{6} - 96 x^{4} - 27 x^{3} + 2304 x^{2} + 1296 x - 14656 \)
Invariants
| Degree: | $6$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[4, 1]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-627262436339931=-\,3\cdot 7^{3}\cdot 61^{3}\cdot 139^{3}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $292.58$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 7, 61, 139$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $\frac{1}{3} a^{2} - \frac{1}{3}$, $\frac{1}{3} a^{3} - \frac{1}{3} a$, $\frac{1}{36} a^{4} + \frac{1}{9} a^{2} + \frac{1}{4} a + \frac{1}{9}$, $\frac{1}{144} a^{5} + \frac{1}{9} a^{3} + \frac{7}{48} a^{2} + \frac{4}{9} a - \frac{1}{3}$
Class group and class number
$C_{6}$, which has order $6$ (assuming GRH)
Unit group
| Rank: | $4$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 207591.557622 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$S_3\wr C_2$ (as 6T13):
| A solvable group of order 72 |
| The 9 conjugacy class representatives for $C_3^2:D_4$ |
| Character table for $C_3^2:D_4$ |
Intermediate fields
| \(\Q(\sqrt{59353}) \) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling algebras
| Twin sextic algebra: | 6.0.1602531.1 |
| Degree 6 sibling: | 6.0.1602531.1 |
| Degree 9 sibling: | Deg 9 |
| Degree 12 siblings: | Deg 12, Deg 12, Deg 12, Deg 12, Deg 12, Deg 12 |
| Degree 18 siblings: | Deg 18, Deg 18, Deg 18 |
| Degree 24 siblings: | data not computed |
| Degree 36 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.3.0.1}{3} }{,}\,{\href{/LocalNumberField/2.2.0.1}{2} }{,}\,{\href{/LocalNumberField/2.1.0.1}{1} }$ | R | ${\href{/LocalNumberField/5.4.0.1}{4} }{,}\,{\href{/LocalNumberField/5.2.0.1}{2} }$ | R | ${\href{/LocalNumberField/11.4.0.1}{4} }{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }$ | ${\href{/LocalNumberField/13.6.0.1}{6} }$ | ${\href{/LocalNumberField/17.4.0.1}{4} }{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }$ | ${\href{/LocalNumberField/19.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/23.3.0.1}{3} }{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }$ | ${\href{/LocalNumberField/29.4.0.1}{4} }{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/37.6.0.1}{6} }$ | ${\href{/LocalNumberField/41.4.0.1}{4} }{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }$ | ${\href{/LocalNumberField/53.3.0.1}{3} }{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }$ | ${\href{/LocalNumberField/59.4.0.1}{4} }{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $3$ | $\Q_{3}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{3}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 3.2.1.1 | $x^{2} - 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 3.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| $7$ | 7.2.1.1 | $x^{2} - 7$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 7.4.2.1 | $x^{4} + 35 x^{2} + 441$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| $61$ | 61.6.3.1 | $x^{6} - 122 x^{4} + 3721 x^{2} - 22698100$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ |
| $139$ | 139.6.3.2 | $x^{6} - 19321 x^{2} + 13428095$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ |
Artin representations
| Label | Dimension | Conductor | Defining polynomial of Artin field | $G$ | Ind | $\chi(c)$ | |
|---|---|---|---|---|---|---|---|
| * | 1.1.1t1.1c1 | $1$ | $1$ | $x$ | $C_1$ | $1$ | $1$ |
| 1.3_7_61_139.2t1.1c1 | $1$ | $ 3 \cdot 7 \cdot 61 \cdot 139 $ | $x^{2} - x + 44515$ | $C_2$ (as 2T1) | $1$ | $-1$ | |
| * | 1.7_61_139.2t1.1c1 | $1$ | $ 7 \cdot 61 \cdot 139 $ | $x^{2} - x - 14838$ | $C_2$ (as 2T1) | $1$ | $1$ |
| 1.3.2t1.1c1 | $1$ | $ 3 $ | $x^{2} - x + 1$ | $C_2$ (as 2T1) | $1$ | $-1$ | |
| 2.3_7_61_139.4t3.2c1 | $2$ | $ 3 \cdot 7 \cdot 61 \cdot 139 $ | $x^{4} - x^{3} + 122 x^{2} - 71 x + 3697$ | $D_{4}$ (as 4T3) | $1$ | $0$ | |
| * | 4.3_7e2_61e2_139e2.6t13.1c1 | $4$ | $ 3 \cdot 7^{2} \cdot 61^{2} \cdot 139^{2}$ | $x^{6} - 96 x^{4} - 27 x^{3} + 2304 x^{2} + 1296 x - 14656$ | $C_3^2:D_4$ (as 6T13) | $1$ | $2$ |
| 4.3e3_7e2_61e2_139e2.12t34.1c1 | $4$ | $ 3^{3} \cdot 7^{2} \cdot 61^{2} \cdot 139^{2}$ | $x^{6} - 96 x^{4} - 27 x^{3} + 2304 x^{2} + 1296 x - 14656$ | $C_3^2:D_4$ (as 6T13) | $1$ | $-2$ | |
| 4.3e2_7_61_139.6t13.1c1 | $4$ | $ 3^{2} \cdot 7 \cdot 61 \cdot 139 $ | $x^{6} - 96 x^{4} - 27 x^{3} + 2304 x^{2} + 1296 x - 14656$ | $C_3^2:D_4$ (as 6T13) | $1$ | $0$ | |
| 4.3e2_7e3_61e3_139e3.12t34.1c1 | $4$ | $ 3^{2} \cdot 7^{3} \cdot 61^{3} \cdot 139^{3}$ | $x^{6} - 96 x^{4} - 27 x^{3} + 2304 x^{2} + 1296 x - 14656$ | $C_3^2:D_4$ (as 6T13) | $1$ | $0$ |