Properties

Label 6.4.6251175.1
Degree $6$
Signature $[4, 1]$
Discriminant $-\,3^{6}\cdot 5^{2}\cdot 7^{3}$
Root discriminant $13.57$
Ramified primes $3, 5, 7$
Class number $1$
Class group Trivial
Galois group $C_3^2:D_4$ (as 6T13)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![7, 0, -12, 5, 3, -3, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^6 - 3*x^5 + 3*x^4 + 5*x^3 - 12*x^2 + 7)
 
gp: K = bnfinit(x^6 - 3*x^5 + 3*x^4 + 5*x^3 - 12*x^2 + 7, 1)
 

Normalized defining polynomial

\( x^{6} - 3 x^{5} + 3 x^{4} + 5 x^{3} - 12 x^{2} + 7 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $6$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[4, 1]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(-6251175=-\,3^{6}\cdot 5^{2}\cdot 7^{3}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $13.57$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $3, 5, 7$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

Trivial group, which has order $1$

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $4$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  \( a^{5} - 2 a^{4} + a^{3} + 6 a^{2} - 6 a - 6 \),  \( a^{5} - 2 a^{4} + a^{3} + 6 a^{2} - 5 a - 5 \),  \( 4 a^{5} - 7 a^{4} + 4 a^{3} + 23 a^{2} - 17 a - 18 \),  \( a^{5} - 2 a^{4} + a^{3} + 6 a^{2} - 4 a - 5 \)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 26.1108689283 \)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$S_3\wr C_2$ (as 6T13):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A solvable group of order 72
The 9 conjugacy class representatives for $C_3^2:D_4$
Character table for $C_3^2:D_4$

Intermediate fields

\(\Q(\sqrt{21}) \)

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling algebras

Twin sextic algebra: 6.0.3189375.2
Degree 6 sibling: 6.0.3189375.2
Degree 9 sibling: 9.3.316465734375.2
Degree 12 siblings: 12.0.39077188880625.1, Deg 12, Deg 12, 12.2.117231566641875.1, Deg 12, Deg 12
Degree 18 siblings: Deg 18, Deg 18, Deg 18
Degree 24 siblings: data not computed
Degree 36 siblings: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type ${\href{/LocalNumberField/2.4.0.1}{4} }{,}\,{\href{/LocalNumberField/2.2.0.1}{2} }$ R R R ${\href{/LocalNumberField/11.4.0.1}{4} }{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }$ ${\href{/LocalNumberField/13.6.0.1}{6} }$ ${\href{/LocalNumberField/17.3.0.1}{3} }{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }$ ${\href{/LocalNumberField/19.6.0.1}{6} }$ ${\href{/LocalNumberField/23.4.0.1}{4} }{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }$ ${\href{/LocalNumberField/29.4.0.1}{4} }{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }$ ${\href{/LocalNumberField/31.6.0.1}{6} }$ ${\href{/LocalNumberField/37.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{2}$ ${\href{/LocalNumberField/41.3.0.1}{3} }{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }$ ${\href{/LocalNumberField/43.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{2}$ ${\href{/LocalNumberField/47.2.0.1}{2} }{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{4}$ ${\href{/LocalNumberField/53.4.0.1}{4} }{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }$ ${\href{/LocalNumberField/59.3.0.1}{3} }{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$3$3.6.6.7$x^{6} + 3 x + 6$$6$$1$$6$$C_3^2:D_4$$[5/4, 5/4]_{4}^{2}$
$5$5.3.0.1$x^{3} - x + 2$$1$$3$$0$$C_3$$[\ ]^{3}$
5.3.2.1$x^{3} - 5$$3$$1$$2$$S_3$$[\ ]_{3}^{2}$
$7$7.2.1.2$x^{2} + 14$$2$$1$$1$$C_2$$[\ ]_{2}$
7.4.2.1$x^{4} + 35 x^{2} + 441$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$

Artin representations

Label Dimension Conductor Defining polynomial of Artin field $G$ Ind $\chi(c)$
* 1.1.1t1.1c1$1$ $1$ $x$ $C_1$ $1$ $1$
1.7.2t1.1c1$1$ $ 7 $ $x^{2} - x + 2$ $C_2$ (as 2T1) $1$ $-1$
* 1.3_7.2t1.1c1$1$ $ 3 \cdot 7 $ $x^{2} - x - 5$ $C_2$ (as 2T1) $1$ $1$
1.3.2t1.1c1$1$ $ 3 $ $x^{2} - x + 1$ $C_2$ (as 2T1) $1$ $-1$
2.3e2_7.4t3.2c1$2$ $ 3^{2} \cdot 7 $ $x^{4} - x^{3} + 2 x + 1$ $D_{4}$ (as 4T3) $1$ $0$
* 4.3e5_5e2_7e2.6t13.2c1$4$ $ 3^{5} \cdot 5^{2} \cdot 7^{2}$ $x^{6} - 3 x^{5} + 3 x^{4} + 5 x^{3} - 12 x^{2} + 7$ $C_3^2:D_4$ (as 6T13) $1$ $2$
4.3e5_5e2_7e2.12t34.2c1$4$ $ 3^{5} \cdot 5^{2} \cdot 7^{2}$ $x^{6} - 3 x^{5} + 3 x^{4} + 5 x^{3} - 12 x^{2} + 7$ $C_3^2:D_4$ (as 6T13) $1$ $-2$
4.3e5_5e4_7.6t13.2c1$4$ $ 3^{5} \cdot 5^{4} \cdot 7 $ $x^{6} - 3 x^{5} + 3 x^{4} + 5 x^{3} - 12 x^{2} + 7$ $C_3^2:D_4$ (as 6T13) $1$ $0$
4.3e5_5e4_7e3.12t34.2c1$4$ $ 3^{5} \cdot 5^{4} \cdot 7^{3}$ $x^{6} - 3 x^{5} + 3 x^{4} + 5 x^{3} - 12 x^{2} + 7$ $C_3^2:D_4$ (as 6T13) $1$ $0$

Data is given for all irreducible representations of the Galois group for the Galois closure of this field. Those marked with * are summands in the permutation representation coming from this field. Representations which appear with multiplicity greater than one are indicated by exponents on the *.