Normalized defining polynomial
\( x^{6} - x^{4} - 4 x^{3} - 15 x^{2} + 2 x + 4 \)
Invariants
| Degree: | $6$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[4, 1]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-6128487=-\,3^{3}\cdot 61^{3}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $13.53$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 61$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $\frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{4} a^{4} - \frac{1}{4} a^{3} - \frac{1}{4} a^{2} - \frac{1}{2} a$, $\frac{1}{12} a^{5} - \frac{1}{12} a^{4} - \frac{1}{4} a^{3} - \frac{1}{3} a^{2} - \frac{1}{6} a + \frac{1}{3}$
Class group and class number
Trivial group, which has order $1$
Unit group
| Rank: | $4$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | \( \frac{1}{12} a^{5} - \frac{1}{12} a^{4} - \frac{1}{4} a^{3} - \frac{1}{3} a^{2} - \frac{7}{6} a + \frac{1}{3} \), \( \frac{5}{12} a^{5} + \frac{1}{12} a^{4} - \frac{1}{4} a^{3} - \frac{5}{3} a^{2} - \frac{19}{3} a - \frac{1}{3} \), \( \frac{1}{4} a^{5} - \frac{5}{4} a^{2} - 3 a - 1 \), \( \frac{1}{4} a^{5} + \frac{1}{4} a^{4} - \frac{1}{4} a^{3} - \frac{3}{2} a^{2} - \frac{9}{2} a - 2 \) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 25.415791235 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$S_3\wr C_2$ (as 6T13):
| A solvable group of order 72 |
| The 9 conjugacy class representatives for $C_3^2:D_4$ |
| Character table for $C_3^2:D_4$ |
Intermediate fields
| \(\Q(\sqrt{61}) \) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling algebras
| Twin sextic algebra: | 6.0.133407.1 |
| Degree 6 sibling: | 6.0.133407.1 |
| Degree 9 sibling: | 9.3.4467667023.1 |
| Degree 12 siblings: | Deg 12, Deg 12, Deg 12, Deg 12, Deg 12, Deg 12 |
| Degree 18 siblings: | Deg 18, Deg 18, Deg 18 |
| Degree 24 siblings: | data not computed |
| Degree 36 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.4.0.1}{4} }{,}\,{\href{/LocalNumberField/2.2.0.1}{2} }$ | R | ${\href{/LocalNumberField/5.3.0.1}{3} }{,}\,{\href{/LocalNumberField/5.2.0.1}{2} }{,}\,{\href{/LocalNumberField/5.1.0.1}{1} }$ | ${\href{/LocalNumberField/7.6.0.1}{6} }$ | ${\href{/LocalNumberField/11.4.0.1}{4} }{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }$ | ${\href{/LocalNumberField/13.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }$ | ${\href{/LocalNumberField/29.4.0.1}{4} }{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }$ | ${\href{/LocalNumberField/31.6.0.1}{6} }$ | ${\href{/LocalNumberField/37.6.0.1}{6} }$ | ${\href{/LocalNumberField/41.3.0.1}{3} }{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }$ | ${\href{/LocalNumberField/43.6.0.1}{6} }$ | ${\href{/LocalNumberField/47.3.0.1}{3} }{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }$ | ${\href{/LocalNumberField/53.4.0.1}{4} }{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }$ | ${\href{/LocalNumberField/59.4.0.1}{4} }{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $3$ | 3.3.3.2 | $x^{3} + 3 x + 3$ | $3$ | $1$ | $3$ | $S_3$ | $[3/2]_{2}$ |
| 3.3.0.1 | $x^{3} - x + 1$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | |
| $61$ | 61.6.3.1 | $x^{6} - 122 x^{4} + 3721 x^{2} - 22698100$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ |
Artin representations
| Label | Dimension | Conductor | Defining polynomial of Artin field | $G$ | Ind | $\chi(c)$ | |
|---|---|---|---|---|---|---|---|
| * | 1.1.1t1.1c1 | $1$ | $1$ | $x$ | $C_1$ | $1$ | $1$ |
| 1.3_61.2t1.1c1 | $1$ | $ 3 \cdot 61 $ | $x^{2} - x + 46$ | $C_2$ (as 2T1) | $1$ | $-1$ | |
| * | 1.61.2t1.1c1 | $1$ | $ 61 $ | $x^{2} - x - 15$ | $C_2$ (as 2T1) | $1$ | $1$ |
| 1.3.2t1.1c1 | $1$ | $ 3 $ | $x^{2} - x + 1$ | $C_2$ (as 2T1) | $1$ | $-1$ | |
| 2.3_61.4t3.2c1 | $2$ | $ 3 \cdot 61 $ | $x^{4} - 2 x^{3} - 2 x^{2} + 3 x + 3$ | $D_{4}$ (as 4T3) | $1$ | $0$ | |
| 4.3e5_61e2.12t36.1c1 | $4$ | $ 3^{5} \cdot 61^{2}$ | $x^{6} - x^{4} - 4 x^{3} - 15 x^{2} + 2 x + 4$ | $C_3^2:D_4$ (as 6T13) | $1$ | $-2$ | |
| * | 4.3e3_61e2.6t13.2c1 | $4$ | $ 3^{3} \cdot 61^{2}$ | $x^{6} - x^{4} - 4 x^{3} - 15 x^{2} + 2 x + 4$ | $C_3^2:D_4$ (as 6T13) | $1$ | $2$ |
| 4.3e6_61.6t13.2c1 | $4$ | $ 3^{6} \cdot 61 $ | $x^{6} - x^{4} - 4 x^{3} - 15 x^{2} + 2 x + 4$ | $C_3^2:D_4$ (as 6T13) | $1$ | $0$ | |
| 4.3e6_61e3.12t34.2c1 | $4$ | $ 3^{6} \cdot 61^{3}$ | $x^{6} - x^{4} - 4 x^{3} - 15 x^{2} + 2 x + 4$ | $C_3^2:D_4$ (as 6T13) | $1$ | $0$ |