Normalized defining polynomial
\( x^{6} - x^{5} - 3x^{4} + 2x^{3} + x^{2} + 2x - 1 \)
Invariants
| Degree: | $6$ |
| |
| Signature: | $[4, 1]$ |
| |
| Discriminant: |
\(-264931\)
|
| |
| Root discriminant: | \(8.01\) |
| |
| Galois root discriminant: | $264931^{1/2}\approx 514.7144839617397$ | ||
| Ramified primes: |
\(264931\)
|
| |
| Discriminant root field: | \(\Q(\sqrt{-264931}) \) | ||
| $\Aut(K/\Q)$: | $C_1$ |
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
| This field has no CM subfields. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$
| Monogenic: | Yes | |
| Index: | $1$ | |
| Inessential primes: | None |
Class group and class number
| Ideal class group: | Trivial group, which has order $1$ |
| |
| Narrow class group: | Trivial group, which has order $1$ |
|
Unit group
| Rank: | $4$ |
| |
| Torsion generator: |
\( -1 \)
(order $2$)
|
| |
| Fundamental units: |
$a^{5}-a^{4}-3a^{3}+2a^{2}+a+2$, $a^{5}-3a^{3}+a+1$, $a-1$, $a^{4}-3a^{2}+1$
|
| |
| Regulator: | \( 2.7129897559 \) |
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{4}\cdot(2\pi)^{1}\cdot 2.7129897559 \cdot 1}{2\cdot\sqrt{264931}}\cr\approx \mathstrut & 0.26494249381 \end{aligned}\]
Galois group
| A non-solvable group of order 720 |
| The 11 conjugacy class representatives for $S_6$ |
| Character table for $S_6$ |
Intermediate fields
| The extension is primitive: there are no intermediate fields between this field and $\Q$. |
Sibling algebras
| Twin sextic algebra: | 6.0.18595092209666491.1 |
| Degree 6 sibling: | 6.0.18595092209666491.1 |
| Degree 10 sibling: | 10.4.18595092209666491.1 |
| Degree 12 siblings: | deg 12, deg 12 |
| Degree 15 siblings: | deg 15, deg 15 |
| Degree 20 siblings: | deg 20, deg 20, deg 20 |
| Degree 30 siblings: | deg 30, deg 30, deg 30, deg 30, deg 30, deg 30 |
| Degree 36 sibling: | deg 36 |
| Degree 40 siblings: | deg 40, deg 40, deg 40 |
| Degree 45 sibling: | deg 45 |
| Minimal sibling: | This field is its own minimal sibling |
Frobenius cycle types
| $p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/padicField/2.6.0.1}{6} }$ | ${\href{/padicField/3.6.0.1}{6} }$ | ${\href{/padicField/5.5.0.1}{5} }{,}\,{\href{/padicField/5.1.0.1}{1} }$ | ${\href{/padicField/7.3.0.1}{3} }{,}\,{\href{/padicField/7.2.0.1}{2} }{,}\,{\href{/padicField/7.1.0.1}{1} }$ | ${\href{/padicField/11.4.0.1}{4} }{,}\,{\href{/padicField/11.2.0.1}{2} }$ | ${\href{/padicField/13.3.0.1}{3} }^{2}$ | ${\href{/padicField/17.6.0.1}{6} }$ | ${\href{/padicField/19.5.0.1}{5} }{,}\,{\href{/padicField/19.1.0.1}{1} }$ | ${\href{/padicField/23.5.0.1}{5} }{,}\,{\href{/padicField/23.1.0.1}{1} }$ | ${\href{/padicField/29.4.0.1}{4} }{,}\,{\href{/padicField/29.2.0.1}{2} }$ | ${\href{/padicField/31.3.0.1}{3} }{,}\,{\href{/padicField/31.2.0.1}{2} }{,}\,{\href{/padicField/31.1.0.1}{1} }$ | ${\href{/padicField/37.3.0.1}{3} }{,}\,{\href{/padicField/37.1.0.1}{1} }^{3}$ | ${\href{/padicField/41.2.0.1}{2} }^{3}$ | ${\href{/padicField/43.5.0.1}{5} }{,}\,{\href{/padicField/43.1.0.1}{1} }$ | ${\href{/padicField/47.4.0.1}{4} }{,}\,{\href{/padicField/47.2.0.1}{2} }$ | ${\href{/padicField/53.5.0.1}{5} }{,}\,{\href{/padicField/53.1.0.1}{1} }$ | ${\href{/padicField/59.6.0.1}{6} }$ |
Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
|
\(264931\)
| $\Q_{264931}$ | $x$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ |
| Deg $2$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ | ||
| Deg $3$ | $1$ | $3$ | $0$ | $C_3$ | $$[\ ]^{3}$$ |
Artin representations
| Label | Dimension | Conductor | Artin stem field | $G$ | Ind | $\chi(c)$ | |
|---|---|---|---|---|---|---|---|
| *720 | 1.1.1t1.a.a | $1$ | $1$ | \(\Q\) | $C_1$ | $1$ | $1$ |
| 1.264931.2t1.a.a | $1$ | $ 264931 $ | \(\Q(\sqrt{-264931}) \) | $C_2$ (as 2T1) | $1$ | $-1$ | |
| *720 | 5.264931.6t16.a.a | $5$ | $ 264931 $ | 6.4.264931.1 | $S_6$ (as 6T16) | $1$ | $3$ |
| 5.70188434761.12t183.a.a | $5$ | $ 264931^{2}$ | 6.4.264931.1 | $S_6$ (as 6T16) | $1$ | $1$ | |
| 5.492...121.12t183.a.a | $5$ | $ 264931^{4}$ | 6.4.264931.1 | $S_6$ (as 6T16) | $1$ | $-3$ | |
| 5.185...491.6t16.a.a | $5$ | $ 264931^{3}$ | 6.4.264931.1 | $S_6$ (as 6T16) | $1$ | $-1$ | |
| 9.185...491.10t32.a.a | $9$ | $ 264931^{3}$ | 6.4.264931.1 | $S_6$ (as 6T16) | $1$ | $3$ | |
| 9.345...081.20t145.a.a | $9$ | $ 264931^{6}$ | 6.4.264931.1 | $S_6$ (as 6T16) | $1$ | $-3$ | |
| 10.345...081.30t164.a.a | $10$ | $ 264931^{6}$ | 6.4.264931.1 | $S_6$ (as 6T16) | $1$ | $-2$ | |
| 10.492...121.30t164.a.a | $10$ | $ 264931^{4}$ | 6.4.264931.1 | $S_6$ (as 6T16) | $1$ | $2$ | |
| 16.242...641.36t1252.a.a | $16$ | $ 264931^{8}$ | 6.4.264931.1 | $S_6$ (as 6T16) | $1$ | $0$ |
Data is given for all irreducible
representations of the Galois group for the Galois closure
of this field. Those marked with * are summands in the
permutation representation coming from this field. Representations
which appear with multiplicity greater than one are indicated
by exponents on the *.