Normalized defining polynomial
\( x^{6} - x^{5} - 2 x^{4} + 8 x^{3} - 7 x^{2} - 7 x + 7 \)
Invariants
| Degree: | $6$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[4, 1]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-1006019=-\,7^{4}\cdot 419\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $10.01$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $7, 419$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $\frac{1}{29} a^{5} - \frac{10}{29} a^{4} + \frac{1}{29} a^{3} - \frac{1}{29} a^{2} + \frac{2}{29} a + \frac{4}{29}$
Class group and class number
Trivial group, which has order $1$
Unit group
| Rank: | $4$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | \( \frac{3}{29} a^{5} - \frac{1}{29} a^{4} + \frac{3}{29} a^{3} + \frac{26}{29} a^{2} - \frac{23}{29} a - \frac{17}{29} \), \( \frac{9}{29} a^{5} - \frac{3}{29} a^{4} - \frac{20}{29} a^{3} + \frac{49}{29} a^{2} - \frac{11}{29} a - \frac{51}{29} \), \( a - 1 \), \( \frac{11}{29} a^{5} + \frac{6}{29} a^{4} - \frac{18}{29} a^{3} + \frac{76}{29} a^{2} + \frac{22}{29} a - \frac{72}{29} \) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 5.78403530293 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times A_4$ (as 6T6):
| A solvable group of order 24 |
| The 8 conjugacy class representatives for $A_4\times C_2$ |
| Character table for $A_4\times C_2$ |
Intermediate fields
| \(\Q(\zeta_{7})^+\) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling algebras
| Galois closure: | data not computed |
| Twin sextic algebra: | 4.0.8602489.1 $\times$ \(\Q(\sqrt{-419}) \) |
| Degree 8 sibling: | 8.0.74002816995121.1 |
| Degree 12 siblings: | Deg 12, Deg 12 |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.6.0.1}{6} }$ | ${\href{/LocalNumberField/3.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/5.3.0.1}{3} }^{2}$ | R | ${\href{/LocalNumberField/11.6.0.1}{6} }$ | ${\href{/LocalNumberField/13.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/17.6.0.1}{6} }$ | ${\href{/LocalNumberField/19.6.0.1}{6} }$ | ${\href{/LocalNumberField/23.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/29.1.0.1}{1} }^{6}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }$ | ${\href{/LocalNumberField/37.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/47.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }$ | ${\href{/LocalNumberField/59.3.0.1}{3} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $7$ | 7.3.2.2 | $x^{3} - 7$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ |
| 7.3.2.2 | $x^{3} - 7$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 419 | Data not computed | ||||||
Artin representations
| Label | Dimension | Conductor | Defining polynomial of Artin field | $G$ | Ind | $\chi(c)$ | |
|---|---|---|---|---|---|---|---|
| * | 1.1.1t1.1c1 | $1$ | $1$ | $x$ | $C_1$ | $1$ | $1$ |
| 1.419.2t1.1c1 | $1$ | $ 419 $ | $x^{2} - x + 105$ | $C_2$ (as 2T1) | $1$ | $-1$ | |
| * | 1.7.3t1.1c1 | $1$ | $ 7 $ | $x^{3} - x^{2} - 2 x + 1$ | $C_3$ (as 3T1) | $0$ | $1$ |
| 1.7_419.6t1.1c1 | $1$ | $ 7 \cdot 419 $ | $x^{6} - x^{5} + 310 x^{4} - 207 x^{3} + 32975 x^{2} - 10816 x + 1202039$ | $C_6$ (as 6T1) | $0$ | $-1$ | |
| 1.7_419.6t1.1c2 | $1$ | $ 7 \cdot 419 $ | $x^{6} - x^{5} + 310 x^{4} - 207 x^{3} + 32975 x^{2} - 10816 x + 1202039$ | $C_6$ (as 6T1) | $0$ | $-1$ | |
| * | 1.7.3t1.1c2 | $1$ | $ 7 $ | $x^{3} - x^{2} - 2 x + 1$ | $C_3$ (as 3T1) | $0$ | $1$ |
| 3.7e2_419e2.4t4.1c1 | $3$ | $ 7^{2} \cdot 419^{2}$ | $x^{4} - x^{3} - 7 x^{2} + 56 x + 203$ | $A_4$ (as 4T4) | $1$ | $-1$ | |
| * | 3.7e2_419.6t6.1c1 | $3$ | $ 7^{2} \cdot 419 $ | $x^{6} - x^{5} - 2 x^{4} + 8 x^{3} - 7 x^{2} - 7 x + 7$ | $A_4\times C_2$ (as 6T6) | $1$ | $1$ |