Properties

Label 6.2.98064208.2
Degree $6$
Signature $[2, 2]$
Discriminant $2^{4}\cdot 11^{2}\cdot 37^{3}$
Root discriminant $21.47$
Ramified primes $2, 11, 37$
Class number $3$
Class group $[3]$
Galois group $D_{6}$ (as 6T3)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-889, -157, 254, 15, -26, -1, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^6 - x^5 - 26*x^4 + 15*x^3 + 254*x^2 - 157*x - 889)
 
gp: K = bnfinit(x^6 - x^5 - 26*x^4 + 15*x^3 + 254*x^2 - 157*x - 889, 1)
 

Normalized defining polynomial

\( x^{6} - x^{5} - 26 x^{4} + 15 x^{3} + 254 x^{2} - 157 x - 889 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $6$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[2, 2]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(98064208=2^{4}\cdot 11^{2}\cdot 37^{3}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $21.47$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $2, 11, 37$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $\frac{1}{56321} a^{5} + \frac{5731}{56321} a^{4} + \frac{14923}{56321} a^{3} - \frac{12948}{56321} a^{2} + \frac{788}{3313} a + \frac{20192}{56321}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

$C_{3}$, which has order $3$

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $3$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  \( \frac{98}{56321} a^{5} - \frac{1572}{56321} a^{4} - \frac{1892}{56321} a^{3} + \frac{26479}{56321} a^{2} + \frac{1025}{3313} a - \frac{161382}{56321} \),  \( \frac{403}{56321} a^{5} + \frac{432}{56321} a^{4} - \frac{12378}{56321} a^{3} + \frac{19809}{56321} a^{2} + \frac{2829}{3313} a - \frac{85490}{56321} \),  \( \frac{452}{56321} a^{5} - \frac{354}{56321} a^{4} - \frac{13324}{56321} a^{3} + \frac{4888}{56321} a^{2} + \frac{11624}{3313} a + \frac{284387}{56321} \)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 20.7491860853 \)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$D_6$ (as 6T3):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A solvable group of order 12
The 6 conjugacy class representatives for $D_{6}$
Character table for $D_{6}$

Intermediate fields

\(\Q(\sqrt{37}) \), 3.1.44.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling algebras

Galois closure: data not computed
Twin sextic algebra: \(\Q\) $\times$ \(\Q(\sqrt{-407}) \) $\times$ 3.1.44.1
Degree 6 sibling: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type R ${\href{/LocalNumberField/3.3.0.1}{3} }^{2}$ ${\href{/LocalNumberField/5.6.0.1}{6} }$ ${\href{/LocalNumberField/7.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/7.1.0.1}{1} }^{2}$ R ${\href{/LocalNumberField/13.2.0.1}{2} }^{3}$ ${\href{/LocalNumberField/17.2.0.1}{2} }^{3}$ ${\href{/LocalNumberField/19.2.0.1}{2} }^{3}$ ${\href{/LocalNumberField/23.6.0.1}{6} }$ ${\href{/LocalNumberField/29.2.0.1}{2} }^{3}$ ${\href{/LocalNumberField/31.6.0.1}{6} }$ R ${\href{/LocalNumberField/41.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{2}$ ${\href{/LocalNumberField/43.2.0.1}{2} }^{3}$ ${\href{/LocalNumberField/47.1.0.1}{1} }^{6}$ ${\href{/LocalNumberField/53.1.0.1}{1} }^{6}$ ${\href{/LocalNumberField/59.6.0.1}{6} }$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$2$2.6.4.1$x^{6} + 3 x^{5} + 6 x^{4} + 3 x^{3} + 9 x + 9$$3$$2$$4$$S_3$$[\ ]_{3}^{2}$
$11$$\Q_{11}$$x + 3$$1$$1$$0$Trivial$[\ ]$
$\Q_{11}$$x + 3$$1$$1$$0$Trivial$[\ ]$
11.2.1.2$x^{2} + 33$$2$$1$$1$$C_2$$[\ ]_{2}$
11.2.1.2$x^{2} + 33$$2$$1$$1$$C_2$$[\ ]_{2}$
$37$37.6.3.1$x^{6} - 74 x^{4} + 1369 x^{2} - 202612$$2$$3$$3$$C_6$$[\ ]_{2}^{3}$

Artin representations

Label Dimension Conductor Defining polynomial of Artin field $G$ Ind $\chi(c)$
* 1.1.1t1.1c1$1$ $1$ $x$ $C_1$ $1$ $1$
1.11.2t1.1c1$1$ $ 11 $ $x^{2} - x + 3$ $C_2$ (as 2T1) $1$ $-1$
* 1.37.2t1.1c1$1$ $ 37 $ $x^{2} - x - 9$ $C_2$ (as 2T1) $1$ $1$
1.11_37.2t1.1c1$1$ $ 11 \cdot 37 $ $x^{2} - x + 102$ $C_2$ (as 2T1) $1$ $-1$
* 2.2e2_11.3t2.1c1$2$ $ 2^{2} \cdot 11 $ $x^{3} - x^{2} + x + 1$ $S_3$ (as 3T2) $1$ $0$
* 2.2e2_11_37e2.6t3.1c1$2$ $ 2^{2} \cdot 11 \cdot 37^{2}$ $x^{6} - x^{5} - 26 x^{4} + 15 x^{3} + 254 x^{2} - 157 x - 889$ $D_{6}$ (as 6T3) $1$ $0$

Data is given for all irreducible representations of the Galois group for the Galois closure of this field. Those marked with * are summands in the permutation representation coming from this field. Representations which appear with multiplicity greater than one are indicated by exponents on the *.