Properties

Label 6.2.90998586000.2
Degree $6$
Signature $[2, 2]$
Discriminant $2^{4}\cdot 3^{3}\cdot 5^{3}\cdot 7^{3}\cdot 17^{3}$
Root discriminant $67.07$
Ramified primes $2, 3, 5, 7, 17$
Class number $24$
Class group $[2, 12]$
Galois group $D_{6}$ (as 6T3)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-131589, -3876, 61, 262, -33, -2, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^6 - 2*x^5 - 33*x^4 + 262*x^3 + 61*x^2 - 3876*x - 131589)
 
gp: K = bnfinit(x^6 - 2*x^5 - 33*x^4 + 262*x^3 + 61*x^2 - 3876*x - 131589, 1)
 

Normalized defining polynomial

\( x^{6} - 2 x^{5} - 33 x^{4} + 262 x^{3} + 61 x^{2} - 3876 x - 131589 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $6$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[2, 2]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(90998586000=2^{4}\cdot 3^{3}\cdot 5^{3}\cdot 7^{3}\cdot 17^{3}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $67.07$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $2, 3, 5, 7, 17$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $\frac{1}{18} a^{3} - \frac{1}{18} a^{2} + \frac{1}{18} a - \frac{1}{6}$, $\frac{1}{18} a^{4} - \frac{1}{9} a - \frac{1}{6}$, $\frac{1}{16032708} a^{5} - \frac{18827}{5344236} a^{4} + \frac{31015}{1336059} a^{3} - \frac{2518297}{8016354} a^{2} - \frac{994211}{5344236} a - \frac{542429}{1781412}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

$C_{2}\times C_{12}$, which has order $24$

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $3$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  \( \frac{347}{16032708} a^{5} - \frac{125}{593804} a^{4} - \frac{985}{2672118} a^{3} + \frac{189440}{4008177} a^{2} - \frac{287995}{5344236} a - \frac{3846721}{1781412} \),  \( \frac{36823}{8016354} a^{5} - \frac{24817}{445353} a^{4} + \frac{70685}{445353} a^{3} + \frac{7722230}{4008177} a^{2} - \frac{50506981}{2672118} a + \frac{4514769}{148451} \),  \( \frac{4}{9} a^{3} - \frac{4}{9} a^{2} - \frac{68}{9} a + \frac{659}{3} \)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 599.767774182 \)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$D_6$ (as 6T3):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A solvable group of order 12
The 6 conjugacy class representatives for $D_{6}$
Character table for $D_{6}$

Intermediate fields

\(\Q(\sqrt{1785}) \), 3.1.204.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling algebras

Galois closure: data not computed
Twin sextic algebra: \(\Q\) $\times$ \(\Q(\sqrt{-35}) \) $\times$ 3.1.204.1
Degree 6 sibling: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type R R R R ${\href{/LocalNumberField/11.3.0.1}{3} }^{2}$ ${\href{/LocalNumberField/13.3.0.1}{3} }^{2}$ R ${\href{/LocalNumberField/19.6.0.1}{6} }$ ${\href{/LocalNumberField/23.6.0.1}{6} }$ ${\href{/LocalNumberField/29.1.0.1}{1} }^{6}$ ${\href{/LocalNumberField/31.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{2}$ ${\href{/LocalNumberField/37.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{2}$ ${\href{/LocalNumberField/41.6.0.1}{6} }$ ${\href{/LocalNumberField/43.6.0.1}{6} }$ ${\href{/LocalNumberField/47.2.0.1}{2} }^{3}$ ${\href{/LocalNumberField/53.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{2}$ ${\href{/LocalNumberField/59.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{2}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$2$2.3.2.1$x^{3} - 2$$3$$1$$2$$S_3$$[\ ]_{3}^{2}$
2.3.2.1$x^{3} - 2$$3$$1$$2$$S_3$$[\ ]_{3}^{2}$
$3$3.2.1.1$x^{2} - 3$$2$$1$$1$$C_2$$[\ ]_{2}$
3.2.1.1$x^{2} - 3$$2$$1$$1$$C_2$$[\ ]_{2}$
3.2.1.1$x^{2} - 3$$2$$1$$1$$C_2$$[\ ]_{2}$
$5$5.6.3.2$x^{6} - 25 x^{2} + 250$$2$$3$$3$$C_6$$[\ ]_{2}^{3}$
$7$7.2.1.2$x^{2} + 14$$2$$1$$1$$C_2$$[\ ]_{2}$
7.4.2.1$x^{4} + 35 x^{2} + 441$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
$17$17.2.1.2$x^{2} + 51$$2$$1$$1$$C_2$$[\ ]_{2}$
17.2.1.2$x^{2} + 51$$2$$1$$1$$C_2$$[\ ]_{2}$
17.2.1.2$x^{2} + 51$$2$$1$$1$$C_2$$[\ ]_{2}$

Artin representations

Label Dimension Conductor Defining polynomial of Artin field $G$ Ind $\chi(c)$
* 1.1.1t1.1c1$1$ $1$ $x$ $C_1$ $1$ $1$
1.3_17.2t1.1c1$1$ $ 3 \cdot 17 $ $x^{2} - x + 13$ $C_2$ (as 2T1) $1$ $-1$
1.5_7.2t1.1c1$1$ $ 5 \cdot 7 $ $x^{2} - x + 9$ $C_2$ (as 2T1) $1$ $-1$
* 1.3_5_7_17.2t1.1c1$1$ $ 3 \cdot 5 \cdot 7 \cdot 17 $ $x^{2} - x - 446$ $C_2$ (as 2T1) $1$ $1$
* 2.2e2_3_17.3t2.1c1$2$ $ 2^{2} \cdot 3 \cdot 17 $ $x^{3} - x^{2} + x - 3$ $S_3$ (as 3T2) $1$ $0$
* 2.2e2_3_5e2_7e2_17.6t3.1c1$2$ $ 2^{2} \cdot 3 \cdot 5^{2} \cdot 7^{2} \cdot 17 $ $x^{6} - 2 x^{5} - 33 x^{4} + 262 x^{3} + 61 x^{2} - 3876 x - 131589$ $D_{6}$ (as 6T3) $1$ $0$

Data is given for all irreducible representations of the Galois group for the Galois closure of this field. Those marked with * are summands in the permutation representation coming from this field. Representations which appear with multiplicity greater than one are indicated by exponents on the *.