magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![164, -208, -51, 121, -17, -1, 1]);
sage: x = polygen(QQ); K.<a> = NumberField(x^6 - x^5 - 17*x^4 + 121*x^3 - 51*x^2 - 208*x + 164)
gp: K = bnfinit(x^6 - x^5 - 17*x^4 + 121*x^3 - 51*x^2 - 208*x + 164, 1)
Normalized defining polynomial
\( x^{6} - x^{5} - 17 x^{4} + 121 x^{3} - 51 x^{2} - 208 x + 164 \)
magma: DefiningPolynomial(K);
sage: K.defining_polynomial()
gp: K.pol
Invariants
| Degree: | $6$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[2, 2]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(86879445589=43^{3}\cdot 103^{3}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $66.55$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $43, 103$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $\frac{1}{4552} a^{5} - \frac{499}{4552} a^{4} - \frac{1875}{4552} a^{3} + \frac{711}{4552} a^{2} + \frac{927}{4552} a - \frac{1051}{2276}$
magma: IntegralBasis(K);
sage: K.integral_basis()
gp: K.zk
Class group and class number
$C_{4}$, which has order $4$
magma: ClassGroup(K);
sage: K.class_group().invariants()
gp: K.clgp
Unit group
magma: UK, f := UnitGroup(K);
sage: UK = K.unit_group()
| Rank: | $3$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | \( \frac{953}{2276} a^{5} + \frac{137}{2276} a^{4} - \frac{16147}{2276} a^{3} + \frac{97203}{2276} a^{2} + \frac{61795}{2276} a - \frac{65029}{1138} \), \( \frac{6721}{1138} a^{5} + \frac{1045}{1138} a^{4} - \frac{113463}{1138} a^{3} + \frac{681831}{1138} a^{2} + \frac{451603}{1138} a - \frac{457112}{569} \), \( \frac{83303}{2276} a^{5} + \frac{7495}{2276} a^{4} - \frac{1411469}{2276} a^{3} + \frac{8537361}{2276} a^{2} + \frac{5111373}{2276} a - \frac{6030823}{1138} \) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 1245.04383054 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
magma: GaloisGroup(K);
sage: K.galois_group(type='pari')
gp: polgalois(K.pol)
| A non-solvable group of order 120 |
| The 7 conjugacy class representatives for $\PGL(2,5)$ |
| Character table for $\PGL(2,5)$ |
Intermediate fields
| The extension is primitive: there are no intermediate fields between this field and $\Q$. |
Sibling algebras
| Twin sextic algebra: | \(\Q\) $\times$ 5.1.4429.1 |
| Degree 5 sibling: | data not computed |
| Degree 10 siblings: | data not computed |
| Degree 12 sibling: | data not computed |
| Degree 15 sibling: | data not computed |
| Degree 20 siblings: | data not computed |
| Degree 24 sibling: | data not computed |
| Degree 30 siblings: | data not computed |
| Degree 40 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.4.0.1}{4} }{,}\,{\href{/LocalNumberField/2.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/3.5.0.1}{5} }{,}\,{\href{/LocalNumberField/3.1.0.1}{1} }$ | ${\href{/LocalNumberField/5.5.0.1}{5} }{,}\,{\href{/LocalNumberField/5.1.0.1}{1} }$ | ${\href{/LocalNumberField/7.6.0.1}{6} }$ | ${\href{/LocalNumberField/11.6.0.1}{6} }$ | ${\href{/LocalNumberField/13.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/17.5.0.1}{5} }{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }$ | ${\href{/LocalNumberField/19.6.0.1}{6} }$ | ${\href{/LocalNumberField/23.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/37.5.0.1}{5} }{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }$ | ${\href{/LocalNumberField/41.5.0.1}{5} }{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }$ | R | ${\href{/LocalNumberField/47.4.0.1}{4} }{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/59.3.0.1}{3} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
magma: idealfactors := Factorization(p*Integers(K)); // get the data
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
gp: idealfactors = idealprimedec(K, p); \\ get the data
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $43$ | 43.6.3.1 | $x^{6} - 86 x^{4} + 1849 x^{2} - 7950700$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ |
| $103$ | 103.2.1.2 | $x^{2} + 206$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 103.4.2.1 | $x^{4} + 927 x^{2} + 265225$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
Artin representations
| Label | Dimension | Conductor | Defining polynomial of Artin field | $G$ | Ind | $\chi(c)$ | |
|---|---|---|---|---|---|---|---|
| * | 1.1.1t1.1c1 | $1$ | $1$ | $x$ | $C_1$ | $1$ | $1$ |
| 1.43_103.2t1.1c1 | $1$ | $ 43 \cdot 103 $ | $x^{2} - x - 1107$ | $C_2$ (as 2T1) | $1$ | $1$ | |
| 4.43e3_103e3.10t12.2c1 | $4$ | $ 43^{3} \cdot 103^{3}$ | $x^{6} - x^{5} - 17 x^{4} + 121 x^{3} - 51 x^{2} - 208 x + 164$ | $\PGL(2,5)$ (as 6T14) | $1$ | $0$ | |
| 4.43_103.5t5.2c1 | $4$ | $ 43 \cdot 103 $ | $x^{6} - x^{5} - 17 x^{4} + 121 x^{3} - 51 x^{2} - 208 x + 164$ | $\PGL(2,5)$ (as 6T14) | $1$ | $0$ | |
| 5.43e2_103e2.10t13.2c1 | $5$ | $ 43^{2} \cdot 103^{2}$ | $x^{6} - x^{5} - 17 x^{4} + 121 x^{3} - 51 x^{2} - 208 x + 164$ | $\PGL(2,5)$ (as 6T14) | $1$ | $1$ | |
| * | 5.43e3_103e3.6t14.2c1 | $5$ | $ 43^{3} \cdot 103^{3}$ | $x^{6} - x^{5} - 17 x^{4} + 121 x^{3} - 51 x^{2} - 208 x + 164$ | $\PGL(2,5)$ (as 6T14) | $1$ | $1$ |
| 6.43e3_103e3.20t35.2c1 | $6$ | $ 43^{3} \cdot 103^{3}$ | $x^{6} - x^{5} - 17 x^{4} + 121 x^{3} - 51 x^{2} - 208 x + 164$ | $\PGL(2,5)$ (as 6T14) | $1$ | $-2$ |
Data is given for all irreducible
representations of the Galois group for the Galois closure
of this field. Those marked with * are summands in the
permutation representation coming from this field. Representations
which appear with multiplicity greater than one are indicated
by exponents on the *.