Properties

Label 6.2.83453453.1
Degree $6$
Signature $[2, 2]$
Discriminant $19^{3}\cdot 23^{3}$
Root discriminant $20.90$
Ramified primes $19, 23$
Class number $2$
Class group $[2]$
Galois group $D_{6}$ (as 6T3)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-2269, -215, 68, -53, 11, -2, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^6 - 2*x^5 + 11*x^4 - 53*x^3 + 68*x^2 - 215*x - 2269)
 
gp: K = bnfinit(x^6 - 2*x^5 + 11*x^4 - 53*x^3 + 68*x^2 - 215*x - 2269, 1)
 

Normalized defining polynomial

\( x^{6} - 2 x^{5} + 11 x^{4} - 53 x^{3} + 68 x^{2} - 215 x - 2269 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $6$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[2, 2]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(83453453=19^{3}\cdot 23^{3}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $20.90$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $19, 23$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $\frac{1}{5} a^{3} - \frac{1}{5} a^{2} + \frac{1}{5}$, $\frac{1}{5} a^{4} - \frac{1}{5} a^{2} + \frac{1}{5} a + \frac{1}{5}$, $\frac{1}{317935} a^{5} - \frac{5923}{63587} a^{4} - \frac{2898}{317935} a^{3} + \frac{39558}{317935} a^{2} - \frac{94859}{317935} a - \frac{23547}{317935}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

$C_{2}$, which has order $2$

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $3$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  \( \frac{131}{317935} a^{5} - \frac{758}{317935} a^{4} + \frac{1884}{317935} a^{3} - \frac{32036}{317935} a^{2} + \frac{36523}{317935} a - \frac{96068}{317935} \),  \( \frac{1604}{317935} a^{5} - \frac{2971}{317935} a^{4} - \frac{6541}{317935} a^{3} - \frac{135968}{317935} a^{2} - \frac{53732}{317935} a + \frac{700747}{317935} \),  \( \frac{1}{5} a^{3} - \frac{1}{5} a^{2} + a - \frac{74}{5} \)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 12.9048329434 \)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$D_6$ (as 6T3):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A solvable group of order 12
The 6 conjugacy class representatives for $D_{6}$
Character table for $D_{6}$

Intermediate fields

\(\Q(\sqrt{437}) \), 3.1.23.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling algebras

Galois closure: 12.0.6964478817623209.2
Twin sextic algebra: 3.1.23.1 $\times$ \(\Q(\sqrt{-19}) \) $\times$ \(\Q\)
Degree 6 sibling: 6.0.3628411.1

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type ${\href{/LocalNumberField/2.6.0.1}{6} }$ ${\href{/LocalNumberField/3.6.0.1}{6} }$ ${\href{/LocalNumberField/5.2.0.1}{2} }^{3}$ ${\href{/LocalNumberField/7.2.0.1}{2} }^{3}$ ${\href{/LocalNumberField/11.2.0.1}{2} }^{3}$ ${\href{/LocalNumberField/13.6.0.1}{6} }$ ${\href{/LocalNumberField/17.2.0.1}{2} }^{3}$ R R ${\href{/LocalNumberField/29.6.0.1}{6} }$ ${\href{/LocalNumberField/31.6.0.1}{6} }$ ${\href{/LocalNumberField/37.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{2}$ ${\href{/LocalNumberField/41.6.0.1}{6} }$ ${\href{/LocalNumberField/43.2.0.1}{2} }^{3}$ ${\href{/LocalNumberField/47.3.0.1}{3} }^{2}$ ${\href{/LocalNumberField/53.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{2}$ ${\href{/LocalNumberField/59.2.0.1}{2} }^{3}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$19$19.2.1.1$x^{2} - 19$$2$$1$$1$$C_2$$[\ ]_{2}$
19.4.2.1$x^{4} + 57 x^{2} + 1444$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
$23$23.2.1.2$x^{2} + 46$$2$$1$$1$$C_2$$[\ ]_{2}$
23.2.1.2$x^{2} + 46$$2$$1$$1$$C_2$$[\ ]_{2}$
23.2.1.2$x^{2} + 46$$2$$1$$1$$C_2$$[\ ]_{2}$

Artin representations

Label Dimension Conductor Defining polynomial of Artin field $G$ Ind $\chi(c)$
* 1.1.1t1.1c1$1$ $1$ $x$ $C_1$ $1$ $1$
1.23.2t1.1c1$1$ $ 23 $ $x^{2} - x + 6$ $C_2$ (as 2T1) $1$ $-1$
1.19.2t1.1c1$1$ $ 19 $ $x^{2} - x + 5$ $C_2$ (as 2T1) $1$ $-1$
* 1.19_23.2t1.1c1$1$ $ 19 \cdot 23 $ $x^{2} - x - 109$ $C_2$ (as 2T1) $1$ $1$
* 2.23.3t2.1c1$2$ $ 23 $ $x^{3} - x^{2} + 1$ $S_3$ (as 3T2) $1$ $0$
* 2.19e2_23.6t3.1c1$2$ $ 19^{2} \cdot 23 $ $x^{6} - 2 x^{5} + 11 x^{4} - 53 x^{3} + 68 x^{2} - 215 x - 2269$ $D_{6}$ (as 6T3) $1$ $0$

Data is given for all irreducible representations of the Galois group for the Galois closure of this field. Those marked with * are summands in the permutation representation coming from this field. Representations which appear with multiplicity greater than one are indicated by exponents on the *.