Normalized defining polynomial
\( x^{6} - x^{5} - 4 x^{4} + 9 x^{3} + 4 x^{2} - 1 \)
Invariants
| Degree: | $6$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[2, 2]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(8258753=17^{3}\cdot 41^{2}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $14.22$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $17, 41$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2}$, $\frac{1}{4} a^{5} + \frac{1}{4} a^{2} + \frac{1}{4} a + \frac{1}{4}$
Class group and class number
$C_{2}$, which has order $2$
Unit group
| Rank: | $3$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | \( a^{5} - a^{4} - 4 a^{3} + 9 a^{2} + 4 a \), \( \frac{1}{4} a^{5} - a^{3} + \frac{5}{4} a^{2} + \frac{9}{4} a + \frac{5}{4} \), \( \frac{3}{4} a^{5} - \frac{1}{2} a^{4} - \frac{7}{2} a^{3} + \frac{25}{4} a^{2} + \frac{23}{4} a - \frac{11}{4} \) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 9.58322267266 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times S_4$ (as 6T11):
| A solvable group of order 48 |
| The 10 conjugacy class representatives for $S_4\times C_2$ |
| Character table for $S_4\times C_2$ |
Intermediate fields
| 3.3.697.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling algebras
| Twin sextic algebra: | 4.0.697.1 $\times$ \(\Q(\sqrt{41}) \) |
| Degree 6 sibling: | 6.2.19918169.1 |
| Degree 8 siblings: | 8.0.816644929.1, 8.0.140398801.1 |
| Degree 12 siblings: | Deg 12, Deg 12, Deg 12, Deg 12, Deg 12, 12.0.164499237983257.1 |
| Degree 16 sibling: | Deg 16 |
| Degree 24 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/3.6.0.1}{6} }$ | ${\href{/LocalNumberField/5.4.0.1}{4} }{,}\,{\href{/LocalNumberField/5.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/7.6.0.1}{6} }$ | ${\href{/LocalNumberField/11.2.0.1}{2} }{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }$ | R | ${\href{/LocalNumberField/19.4.0.1}{4} }{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }$ | ${\href{/LocalNumberField/23.4.0.1}{4} }{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/37.2.0.1}{2} }^{3}$ | R | ${\href{/LocalNumberField/43.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/59.3.0.1}{3} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $17$ | 17.2.1.2 | $x^{2} + 51$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 17.2.1.2 | $x^{2} + 51$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 17.2.1.1 | $x^{2} - 17$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| $41$ | 41.2.0.1 | $x^{2} - x + 12$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 41.4.2.1 | $x^{4} + 943 x^{2} + 242064$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
Artin representations
| Label | Dimension | Conductor | Defining polynomial of Artin field | $G$ | Ind | $\chi(c)$ | |
|---|---|---|---|---|---|---|---|
| * | 1.1.1t1.1c1 | $1$ | $1$ | $x$ | $C_1$ | $1$ | $1$ |
| 1.41.2t1.1c1 | $1$ | $ 41 $ | $x^{2} - x - 10$ | $C_2$ (as 2T1) | $1$ | $1$ | |
| 1.17_41.2t1.1c1 | $1$ | $ 17 \cdot 41 $ | $x^{2} - x - 174$ | $C_2$ (as 2T1) | $1$ | $1$ | |
| 1.17.2t1.1c1 | $1$ | $ 17 $ | $x^{2} - x - 4$ | $C_2$ (as 2T1) | $1$ | $1$ | |
| 2.17_41.6t3.2c1 | $2$ | $ 17 \cdot 41 $ | $x^{6} - 3 x^{5} - 3 x^{4} + 11 x^{3} - x^{2} - 5 x + 1$ | $D_{6}$ (as 6T3) | $1$ | $2$ | |
| * | 2.17_41.3t2.1c1 | $2$ | $ 17 \cdot 41 $ | $x^{3} - 7 x - 5$ | $S_3$ (as 3T2) | $1$ | $2$ |
| 3.17_41.4t5.1c1 | $3$ | $ 17 \cdot 41 $ | $x^{4} - x^{3} + 2 x^{2} - x + 2$ | $S_4$ (as 4T5) | $1$ | $-1$ | |
| * | 3.17e2_41.6t11.3c1 | $3$ | $ 17^{2} \cdot 41 $ | $x^{6} - x^{5} - 4 x^{4} + 9 x^{3} + 4 x^{2} - 1$ | $S_4\times C_2$ (as 6T11) | $1$ | $-1$ |
| 3.17_41e2.6t11.1c1 | $3$ | $ 17 \cdot 41^{2}$ | $x^{6} - x^{5} - 4 x^{4} + 9 x^{3} + 4 x^{2} - 1$ | $S_4\times C_2$ (as 6T11) | $1$ | $-1$ | |
| 3.17e2_41e2.6t8.2c1 | $3$ | $ 17^{2} \cdot 41^{2}$ | $x^{4} - x^{3} + 2 x^{2} - x + 2$ | $S_4$ (as 4T5) | $1$ | $-1$ |