magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![102, -164, 16, -41, 8, 0, 1]);
sage: x = polygen(QQ); K.<a> = NumberField(x^6 + 8*x^4 - 41*x^3 + 16*x^2 - 164*x + 102)
gp: K = bnfinit(x^6 + 8*x^4 - 41*x^3 + 16*x^2 - 164*x + 102, 1)
Normalized defining polynomial
\( x^{6} + 8 x^{4} - 41 x^{3} + 16 x^{2} - 164 x + 102 \)
magma: DefiningPolynomial(K);
sage: K.defining_polynomial()
gp: K.pol
Invariants
| Degree: | $6$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[2, 2]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(8251733668=2^{2}\cdot 19^{3}\cdot 67^{3}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $44.95$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 19, 67$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $\frac{1}{2113} a^{5} + \frac{824}{2113} a^{4} + \frac{711}{2113} a^{3} + \frac{522}{2113} a^{2} - \frac{908}{2113} a - \frac{354}{2113}$
magma: IntegralBasis(K);
sage: K.integral_basis()
gp: K.zk
Class group and class number
$C_{2}$, which has order $2$
magma: ClassGroup(K);
sage: K.class_group().invariants()
gp: K.clgp
Unit group
magma: UK, f := UnitGroup(K);
sage: UK = K.unit_group()
| Rank: | $3$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | \( \frac{605}{2113} a^{5} + \frac{1965}{2113} a^{4} + \frac{9668}{2113} a^{3} + \frac{5199}{2113} a^{2} + \frac{14831}{2113} a - \frac{13435}{2113} \), \( \frac{204}{2113} a^{5} - \frac{944}{2113} a^{4} + \frac{1360}{2113} a^{3} - \frac{11840}{2113} a^{2} + \frac{38746}{2113} a - \frac{19391}{2113} \), \( \frac{33156478}{2113} a^{5} - \frac{112491886}{2113} a^{4} + \frac{189798960}{2113} a^{3} - \frac{1721172414}{2113} a^{2} + \frac{4541581916}{2113} a - \frac{2191989667}{2113} \) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 1970.02202867 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
magma: GaloisGroup(K);
sage: K.galois_group(type='pari')
gp: polgalois(K.pol)
| A solvable group of order 36 |
| The 9 conjugacy class representatives for $S_3^2$ |
| Character table for $S_3^2$ |
Intermediate fields
| \(\Q(\sqrt{1273}) \) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling algebras
| Galois closure: | data not computed |
| Twin sextic algebra: | 3.1.76.1 $\times$ 3.1.268.1 |
| Degree 9 sibling: | 9.1.132027738688.1 |
| Degree 12 sibling: | Deg 12 |
| Degree 18 siblings: | Deg 18, Deg 18, Deg 18 |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/3.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/5.6.0.1}{6} }$ | ${\href{/LocalNumberField/7.6.0.1}{6} }$ | ${\href{/LocalNumberField/11.6.0.1}{6} }$ | ${\href{/LocalNumberField/13.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/17.3.0.1}{3} }{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }^{3}$ | R | ${\href{/LocalNumberField/23.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/37.6.0.1}{6} }$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/43.6.0.1}{6} }$ | ${\href{/LocalNumberField/47.3.0.1}{3} }{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{3}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
magma: idealfactors := Factorization(p*Integers(K)); // get the data
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
gp: idealfactors = idealprimedec(K, p); \\ get the data
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | $\Q_{2}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| 2.2.0.1 | $x^{2} - x + 1$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 2.3.2.1 | $x^{3} - 2$ | $3$ | $1$ | $2$ | $S_3$ | $[\ ]_{3}^{2}$ | |
| $19$ | 19.6.3.2 | $x^{6} - 361 x^{2} + 27436$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ |
| 67 | Data not computed | ||||||
Artin representations
| Label | Dimension | Conductor | Defining polynomial of Artin field | $G$ | Ind | $\chi(c)$ | |
|---|---|---|---|---|---|---|---|
| * | 1.1.1t1.1c1 | $1$ | $1$ | $x$ | $C_1$ | $1$ | $1$ |
| * | 1.19_67.2t1.1c1 | $1$ | $ 19 \cdot 67 $ | $x^{2} - x - 318$ | $C_2$ (as 2T1) | $1$ | $1$ |
| 1.19.2t1.1c1 | $1$ | $ 19 $ | $x^{2} - x + 5$ | $C_2$ (as 2T1) | $1$ | $-1$ | |
| 1.67.2t1.1c1 | $1$ | $ 67 $ | $x^{2} - x + 17$ | $C_2$ (as 2T1) | $1$ | $-1$ | |
| 2.2e2_19e2_67.6t3.2c1 | $2$ | $ 2^{2} \cdot 19^{2} \cdot 67 $ | $x^{6} - x^{5} + 8 x^{4} - 13 x^{3} + 84 x^{2} + 111 x + 305$ | $D_{6}$ (as 6T3) | $1$ | $0$ | |
| 2.2e2_67.3t2.1c1 | $2$ | $ 2^{2} \cdot 67 $ | $x^{3} - x^{2} - 3 x + 5$ | $S_3$ (as 3T2) | $1$ | $0$ | |
| 2.2e2_19_67e2.6t3.1c1 | $2$ | $ 2^{2} \cdot 19 \cdot 67^{2}$ | $x^{6} - 3 x^{5} - 81 x^{4} + 133 x^{3} + 2894 x^{2} - 6922 x - 86274$ | $D_{6}$ (as 6T3) | $1$ | $0$ | |
| 2.2e2_19.3t2.1c1 | $2$ | $ 2^{2} \cdot 19 $ | $x^{3} - 2 x - 2$ | $S_3$ (as 3T2) | $1$ | $0$ | |
| * | 4.2e2_19e2_67e2.6t9.1c1 | $4$ | $ 2^{2} \cdot 19^{2} \cdot 67^{2}$ | $x^{6} + 8 x^{4} - 41 x^{3} + 16 x^{2} - 164 x + 102$ | $S_3^2$ (as 6T9) | $1$ | $0$ |
Data is given for all irreducible
representations of the Galois group for the Galois closure
of this field. Those marked with * are summands in the
permutation representation coming from this field. Representations
which appear with multiplicity greater than one are indicated
by exponents on the *.