Normalized defining polynomial
\( x^{6} + 11x^{4} - 34x^{3} + 86x^{2} + 36x - 380 \)
Invariants
| Degree: | $6$ |
| |
| Signature: | $[2, 2]$ |
| |
| Discriminant: |
\(709732288\)
\(\medspace = 2^{6}\cdot 223^{3}\)
|
| |
| Root discriminant: | \(29.87\) |
| |
| Galois root discriminant: | $2\cdot 223^{1/2}\approx 29.866369046136157$ | ||
| Ramified primes: |
\(2\), \(223\)
|
| |
| Discriminant root field: | \(\Q(\sqrt{223}) \) | ||
| $\Aut(K/\Q)$: | $C_2$ |
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
| This field has no CM subfields. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $\frac{1}{2}a^{3}-\frac{1}{2}a^{2}$, $\frac{1}{2}a^{4}-\frac{1}{2}a^{2}$, $\frac{1}{18442}a^{5}-\frac{2175}{9221}a^{4}+\frac{1019}{18442}a^{3}-\frac{3302}{9221}a^{2}-\frac{2575}{9221}a-\frac{2247}{9221}$
| Monogenic: | Not computed | |
| Index: | $1$ | |
| Inessential primes: | None |
Class group and class number
| Ideal class group: | $C_{4}$, which has order $4$ |
| |
| Narrow class group: | $C_{2}\times C_{4}$, which has order $8$ |
|
Unit group
| Rank: | $3$ |
| |
| Torsion generator: |
\( -1 \)
(order $2$)
|
| |
| Fundamental units: |
$\frac{17}{18442}a^{5}-\frac{91}{9221}a^{4}-\frac{1119}{18442}a^{3}-\frac{808}{9221}a^{2}+\frac{2330}{9221}a-\frac{19757}{9221}$, $\frac{247}{9221}a^{5}-\frac{407}{18442}a^{4}+\frac{2726}{9221}a^{3}-\frac{25805}{18442}a^{2}+\frac{28111}{9221}a-\frac{31161}{9221}$, $\frac{161}{18442}a^{5}+\frac{223}{9221}a^{4}-\frac{1919}{18442}a^{3}+\frac{3196}{9221}a^{2}+\frac{370}{9221}a-\frac{11369}{9221}$
|
| |
| Regulator: | \( 102.057049696 \) |
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{2}\cdot(2\pi)^{2}\cdot 102.057049696 \cdot 4}{2\cdot\sqrt{709732288}}\cr\approx \mathstrut & 1.20988878638 \end{aligned}\]
Galois group
| A solvable group of order 24 |
| The 5 conjugacy class representatives for $S_4$ |
| Character table for $S_4$ |
Intermediate fields
| 3.3.892.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling algebras
| Galois closure: | deg 24 |
| Twin sextic algebra: | \(\Q\) $\times$ \(\Q\) $\times$ 4.0.892.1 |
| Degree 4 sibling: | 4.0.892.1 |
| Degree 6 sibling: | 6.2.795664.1 |
| Degree 8 sibling: | 8.0.633081200896.2 |
| Degree 12 siblings: | deg 12, deg 12 |
| Minimal sibling: | 4.0.892.1 |
Frobenius cycle types
| $p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/padicField/3.3.0.1}{3} }^{2}$ | ${\href{/padicField/5.4.0.1}{4} }{,}\,{\href{/padicField/5.1.0.1}{1} }^{2}$ | ${\href{/padicField/7.4.0.1}{4} }{,}\,{\href{/padicField/7.1.0.1}{1} }^{2}$ | ${\href{/padicField/11.3.0.1}{3} }^{2}$ | ${\href{/padicField/13.4.0.1}{4} }{,}\,{\href{/padicField/13.1.0.1}{1} }^{2}$ | ${\href{/padicField/17.3.0.1}{3} }^{2}$ | ${\href{/padicField/19.4.0.1}{4} }{,}\,{\href{/padicField/19.1.0.1}{1} }^{2}$ | ${\href{/padicField/23.3.0.1}{3} }^{2}$ | ${\href{/padicField/29.3.0.1}{3} }^{2}$ | ${\href{/padicField/31.2.0.1}{2} }^{3}$ | ${\href{/padicField/37.3.0.1}{3} }^{2}$ | ${\href{/padicField/41.3.0.1}{3} }^{2}$ | ${\href{/padicField/43.4.0.1}{4} }{,}\,{\href{/padicField/43.1.0.1}{1} }^{2}$ | ${\href{/padicField/47.2.0.1}{2} }^{3}$ | ${\href{/padicField/53.3.0.1}{3} }^{2}$ | ${\href{/padicField/59.3.0.1}{3} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
|
\(2\)
| 2.1.2.2a1.1 | $x^{2} + 2 x + 2$ | $2$ | $1$ | $2$ | $C_2$ | $$[2]$$ |
| 2.2.2.4a1.1 | $x^{4} + 2 x^{3} + 5 x^{2} + 4 x + 5$ | $2$ | $2$ | $4$ | $C_2^2$ | $$[2]^{2}$$ | |
|
\(223\)
| Deg $2$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ | |
| Deg $4$ | $2$ | $2$ | $2$ |